
Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor

Raimond Reichert, Samuel Zürcher, Ergon Informatik AG ↓

Meteor
Fullstack JavaScript Development

The rate of innovation in the JavaScript space is still incredible. For a while, it seemed that Angular
would emerge as a winner in the web application frontend wars. Now, with Meteor, there is a new
contender, a full-stack development framework which promises "to allow you to build advanced
apps quickly, with a small team – allowing even individuals to achieve things that used to be possible
only at large companies like Google and Facebook."

We wanted to gain some experience with Meteor with a very small project (approx. 20d, two people)
to form our own opinion on these promises. We were quite impressed, as our estimates of what we
would be able to build were way off: We developed roughly 50% more functionality than we had
estimated. Meteor seemed easy to learn, and we very quickly felt very productive with Meteor.

In this presentation, we give a short overview on Meteor (with its Distributed Data Protocol, Latency
Compensation, and Reactivity) and its components for rendering (Blaze) and testing (Velocity) as
well as its package system (atmosphere.js). In a "slide coding" session, we implement a "lessons
learned" feature of our demo application, Retro42 () as a showcase for
coding with Meteor.

Raimond Reichert, Samuel Zürcher, Ergon Informatik AG

retro42.herokuapp.com

https://retro42.herokuapp.com/

Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor ↓

Retro42: Our prototype application
Our motivation for building Retro42

Change begins with settings goals, and tracking how you
do on them.
Retro42 lets you define questionnaires, and you can
schedule them for yourself, or for your team.
Retro42 helps you track your answers, and visualizes
them for you, grouping by answers by question, or
charting them as time-series.

Retro 42: Demo Screenshots
Start from an existing questionnaire template...

↓

Retro 42: Demo Screenshots
... or create a questionnaire from scratch.

Retro 42: Demo Screenshots
Define your schedule for answering your questionnaire.

Retro 42: Demo Screenshots
Retro42 will send you reminder mails according to the

schedule

Retro 42: Demo Screenshots
Submit answers to your questionnaire

Retro 42: Demo Screenshots
Review all your answers to a questionnaire

Retro 42: Demo Screenshots
Review your answers to a textual question

Retro 42: Demo Screenshots
Review your answers to a numeric question

Retro 42: Demo Screenshots
Review the percentage of positive answers to a yes/no

question

Retro 42: Demo Screenshots
Review a yes/no answers on a calendar

Retro 42: Demo Screenshots
Invite others to participate on a questionnaire

Retro 42: Demo Screenshots
Review a shared questionnaire and its participants

Retro 42: Demo Screenshots
Review your group's questionnaire passes

Retro 42: Demo Screenshots
Review all answers in a group questionnaire pass

Retro 42: Demo Screenshots
Review all answers to a numeric question

Retro 42: Demo Screenshots
Review all answers to a yes/no question

Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor

Why did we choose Meteor?

In 2015, what would you choose?

So many web and mobile app development options, yet still
no clear winner emerges... making each option a risk with

regards to long-term maintainability.

We chose Meteor because it implements an approach which
is quite different from what we've gotten used to.

Why did we choose Meteor?

Integrated development plattform

from www.forbes.com/sites/anthonykosner/2015/06/30/meteor-is-the-app-platform-for-the-new-
world-of-cloud-client-computing

↓

http://www.forbes.com/sites/anthonykosner/2015/06/30/meteor-is-the-app-platform-for-the-new-world-of-cloud-client-computing/2/

Why did we choose Meteor?

Principles of particular interest
Full-stack JavaScript (or CoffeeScript, for us), for both
backend and frontend
Meteor's database everywhere principle makes it easy to
build apps on top of databases
We wanted to see Meteor's latency compensation
principle and reactivity in action.
Meteor advertises fast and fun development, and who
wouldn't like that:-)
It promises one code base for web and mobile plattforms.
However, we did not look into Meteor's multi-plattform
capabilities in our project.

Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor

What is Meteor?

Command line tool
meteor add <package name>
Add a package to your Meteor project.
meteor run
Serve the current app at http://localhost:3000 using
Meteor's local development server.
Also continuously runs tests if Velocity package has been
added to your project.
meteor reset
Reset the current project to a fresh state.
Removes all local data.

What is Meteor?

Its own build system
For example, meteor add coffeescript adds
CoffeeScript support to your project – that's it
Client and server: Packages work seamlessly on both
client and server.
Asset building and bundling: The package system
integrates with Meteor's asset building/bundling system.
"We feel strongly that every package in your app should
be always pinned to a specific version, and those version
pins should be checked into source control."

see quora.com/Node-js/Why-does-Meteor-use-its-own-package-system-rather-than-NPM

http://www.quora.com/Node-js/Why-does-Meteor-use-its-own-package-system-rather-than-NPM

What is Meteor?

Full-stack package system

see atmospherejs.com

https://atmospherejs.com/

see atmospherejs.com

What is Meteor?

Integrated MongoDb support
The same database API works on both client and server.

The API is compatible with the Mongo database API.

see

common code on client and server declares a DDP-managed mongo collection
Messages = new Mongo.Collection "messages"

return array of my messages (here, in client code)
myMessages = Messages.find({userId: Meteor.userId()}).fetch()

create a new message
Messages.insert {text: "Hello, world!"}

mark my first message as "important"
Messages.update myMessages[0]._id, {$set: {important: true}}

docs.meteor.com/#/full/mongo_collection ↓

https://atmospherejs.com/
http://docs.meteor.com/#/full/mongo_collection

What is Meteor?

Integrated MongoDb support
On the server, when you call methods on a collection,
they translate directly into normal Mongo operations
(after checking that they match your access control rules).
On the client, Minimongo is essentially an in-memory,
non-persistent implementation of Mongo in pure
JavaScript. It serves as a local cache that stores just the
subset of the database that this client is working with.
When you write to the db on the client, the command is
executed locally immediately, and, simultaneously, it's
sent to the server and executed there too.

see docs.meteor.com/#/full/mongo_collection

http://docs.meteor.com/#/full/mongo_collection

What is Meteor?

Mini-MongoDb limitations
In its current release, Minimongo has some limitations:

$pull in modifiers only accepts certain kinds of selectors.
findAndModify, aggregate functions, and map/reduce
aren't supported.
Minimongo doesn't currently have indexes. It's rare for
this to be an issue, since it's unusual for a client to have
enough data that an index is worthwhile.

All of these will be addressed in a future release.
see docs.meteor.com/#/full/mongo_collection

http://docs.meteor.com/#/full/mongo_collection

What is Meteor?

From event-driven-programming...

from

var spaceship = {

 _temperature: 0, _listeners: [],

 getTemperature: function() {
 return this._temperature;
 },

 setTemperature: function(value) {
 this._temperature = value;
 this.changed();
 },

 // to be continued
};

stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-
programming

http://stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-programming

What is Meteor?

From event-driven-programming...

from

var spaceship = { // code from previous slide
 changed: function() {
 for (var i=0;i< this._listeners.length;i++) {
 this._listeners[i]();
 }
 },

 onChanged: function(func) {
 this._listeners.push(func);
 }
};

// observer updates dashboard when temperature changes
spaceship.onChanged(function() {
 var temp = spaceship.getTemperature();
 gauge.setValue(temp);
});

stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-
programming

http://stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-programming

What is Meteor?

... towards reactive programming

from

var spaceship = {

 _temperature: 0,
 _temperatureDepend: new Tracker.Dependency,

 getTemperature: function() {
 this._temperatureDepend.depend();
 return this._temperature;
 },

 setTemperature: function(value) {
 this._temperature = value;
 this._temperatureDepend.changed();
 }
};

stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-
programming

http://stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-programming

What is Meteor?

... towards reactive programming

The function passed to Tracker.autorun() is rerun
automatically whenever any of its dependencies change.

from

// Tracker updates dashboard when temperature changes
Tracker.autorun(function() {
 var temp = spaceship.getTemperature();
 gauge.setValue(temp);
});

stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-
programming

http://stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-programming

What is Meteor?

Meteor Reactivity is Transparent
You rarely work with Tracker Dependency directly. Instead,

you work with Meteor's reactive data sources such as:

Session object
Reactive variables
Minimongo
Meteor.user(), Meteor.status()

from stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-
programming

http://stephenwalther.com/archive/2014/12/05/dont-do-react-understanding-meteor-reactive-programming

What is Meteor?

Livequery: Latency Compensation

from info.meteor.com/blog/optimistic-ui-with-meteor-latency-compensation ↓

http://info.meteor.com/blog/optimistic-ui-with-meteor-latency-compensation

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

Meteor Data Flows

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

What is Meteor?

View with Blaze and Spacebars
Spacebars is simply HTML, with the addition of three things:

Inclusions use the {{> templateName}} syntax, and simply
tell Meteor to replace the inclusion with the template of
the same name.
Expressions such as {{title}} either call a property of the
current object, or the return value of a template helper as
defined in the current template’s helper.
Template helpers are special tags that control the flow of
the template, such as {{#each}} ... {{/each}} or {{#if}}...{{/if}}.

What is Meteor?

View with Blaze and Spacebars
In this example, url and title come from a post object,

whereas domain is a call to a template helper function:

<template name="postItem">
 <div class="post">
 <div class="post-content">
 <h3>{{title}}{{domain}}</h3>
 </div>
 </div>
</template>

Template.postItem.helpers
 domain: () ->
 a = _createLink this.url
 a.hostname ↓

What is Meteor?

View with Blaze and Spacebars
Blaze is reactive: The template will update automatically,

with no additional work on your part. This works even if the
template runs arbitrary JavaScript code to compute its data.

Blaze's simplicity is made possible by Tracker, an extremely
lightweight (one kb) system for transparent reactivity.

By wiring all of this up for you, Blaze removes an enormous
amount of boilerplate from your app, and allows you to say

what you want once without repeating yourself.
from meteor.com/blaze

https://www.meteor.com/blaze

What is Meteor?

Integrated development plattform

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor

Show me some code!

Implementing "lessons learned"
Let user add lessons learned to a questionnaire:

Show me some code!

Implementing "lessons learned"
Display lessons learned of a questionnaire:

Show me some code!

Include with Blaze, Spacebars

We include the lessonsLearnedTemplate in the
questionnairePasses template.
We pass this questionnaire's _id as questionnaireId.

<template name="questionnairePasses">
 {{> _questionnaireTitleDescription}}
 <!-- left out: display questionnaire questions -->
 {{> _questionnaireButtons}}

 {{> lessonsLearnedTemplate questionnaireId=_id}}

 <!-- left out: display questionnaire passes -->
</template>

Show me some code!

Display with Blaze, Spacebars

The template name lessonsLearnedTemplate is the
key which we will use in our CoffeeScript code.
{{_ 'key'}} is i18n with Meteor package tap:i18n.
We left out some of the table markup (thead).

<template name="lessonsLearnedTemplate">
 <h2>{{_ 'lessonsLearnedTemplate.title'}}</h2>
 {{#if lessonsLearned}}
 <table class="..." id="lessonsLearnedTable">
 <tbody>
 {{#each lessonsLearned}}
 <<!-- next slide -->
 {{/each}}
 </tbody>
 </table>
 {{/if}}
</template>

Show me some code!

Display with Blaze, Spacebars

Examples of calling a template helper function:
lessonsLearned, createdAtAbsolute.
Example of looking up a value in current scope: text.
Iterating with {{#each lessonsLearned}} creates a
new this scope for each document in the collection.

{{#each lessonsLearned}}
 <tr>
 <td class="createdAt">{{createdAtAbsolute}} {{createdAtRelative}}</td>
 <td class="text">{{text}}</td>
 <td class="actions">
 <a href="#"
 class="deleteLessonLearned btn btn-default btn-sm">
 {{_ 'lessonsLearnedTemplate.delete'}}

 </td>
 </tr>
{{/each}}

Show me some code!

Template helper functions

Get the questionnaire id for which to show lessons
learned: this.questionnaireId.
Use livequery to read from LessonsLearned collection.
Note that the this scope for the helper functions
createdAt* is a lesson learned document.

Template.lessonsLearnedTemplate.helpers
 lessonsLearned: () ->
 LessonsLearned.find({questionnaireId: this.questionnaireId},
 {sort: {createdAt: -1}}).fetch()

 createdAtAbsolute: () ->
 moment(this.createdAt).format('YYYY-MM-DD HH:mm')

 createdAtRelative: () ->
 moment(this.createdAt).fromNow()

Show me some code!

Defining collections

Create a new collection with new Mongo.Collection
'lessons_learned'. On the server, this sets up a
MongoDB collection called my-collection; on the client,
this creates a cache connected to the server collection.
Define conditions which allow insertion and removal of
lessons learned documents.

@LessonsLearned = new Mongo.Collection 'lessons_learned'

LessonsLearned.allow
 insert: (userId) ->
 userId is Meteor.userId()
 remove: (userId, lessonLearned) ->
 userId? and (userId is lessonLearned.userId)

Show me some code!

Publishing / subscribe to data
server-side only code
Meteor.publish 'lessons_learned', (questionnaireId) ->
 check questionnaireId, String
 LessonsLearned.find(
 {questionnaireId: questionnaireId, userId: this.userId},
 {sort: {createdAt: -1}}

server- and client-side code
Router.route '/questionnaires/:_id/passes', {
 name: 'questionnairePasses'
 waitOn: () -> [
 Meteor.subscribe 'questionnaire', this.params._id
 Meteor.subscribe 'lessons_learned', this.params._id
 Meteor.subscribe 'questionnaire_passes', this.params._id
]
 data: () -> Questionnaires.findOne this.params._id
} ↓

Show me some code!

Auto-publish: Turn it off!

from Discover Meteor

Show me some code!

Publish full collections

from Discover Meteor

Show me some code!

Publish partial collections

from Discover Meteor

Show me some code!

Publish partial properties

from Discover Meteor

Show me some code!

Using events for adding, deleting
<template name="lessonsLearnedTemplate">
 <h2>{{_ 'lessonsLearnedTemplate.title'}}</h2>
 <!-- display code from previous slides -->
 <form id="addLessonLearned"> <!-- we left out some Bootstrap markup -->
 <input type="text" name="text">
 </form>
</template>

Template.lessonsLearnedTemplate.events
 'submit #addLessonLearned': (event) ->
 event.preventDefault()
 LessonsLearned.insert
 questionnaireId: this.questionnaireId
 userId: Meteor.userId()
 text: event.target.text.value
 event.target.text.value = ''

 'click .deleteLessonLearned': () ->
 LessonsLearned.remove this._id

Show me some code!

Using reactivity
Making our relative time stamps react to language change:

Template.lessonsLearnedTemplate.helpers
 createdAtRelative: () ->
 share.languageDependency.depend()
 # make this computation dependent on a shared dependency
 moment(this.createdAt).format('YYYY-MM-DD HH:mm')

client/startup.coffee
Meteor.startup () ->
 share.languageDependency = new Deps.Dependency

client/templates/header.coffee
Template.header.events
 'click .tap-i18n-buttons button': () ->
 newLanguage = TAPi18n.getLanguage()
 accountsUIBootstrap3.setLanguage newLanguage
 moment.locale newLanguage
 share.languageDependency.changed()
 # forces re-computation of all dependent computations

Show me some code!

Did you notice? No callbacks!
We've implemented the "lessons learned" feature without

any callbacks! In many cases, Meteor takes care of the
asynchronicity and the callbacks necessary to deal with it.

If you need to explicitely call a server-side function, use
Meteor.call. Using a ReactiveVar, it's easy to update

the UI reactively.

In our project, we only used Meteor.call nine times, some
due to Mini-MongoDb limitations (no aggregations).

Show me some code!

Meteor.call, ReactiveVar example
_numericAnswersChartVar = new ReactiveVar null

Template.questionnaireQuestionView.helpers
 numericAnswersChart: () -> _numericAnswersChartVar.get()

Template.questionnaireQuestionView.onRendered () ->
 questionnaire = this.data
 Meteor.call 'questionnaireQuestionAnswers', Router.current().params._id,
 Router.current().params._questionUuid, (error, result) ->
 if error then return share.showErrorMessage error.reason
 question = share._question questionnaire
 if question.type is 'numeric'
 timeSeries = _.map result,
 (answer) -> [answer.createdAt.getTime(), parseFloat(answer.value)]
 numericChart = _numericChart timeSeries.reverse(), questionnaire
 _numericAnswersChartVar.set numericChart # update ReactiveVar

Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor

Comparing Meteor vs. MEAN

All-inclusive vs. do-it-yourself

Meteor = MEAN stack + Socket.IO + grunt/gulp + Cordova +
hot code reload + a lot more.

from ,
see also

wiki.dandascalescu.com/essays/meteor_js_vs_the_mean_stack
wiki.dandascalescu.com/essays/why_meteor

↓

http://wiki.dandascalescu.com/essays/meteor_js_vs_the_mean_stack
http://wiki.dandascalescu.com/essays/why_meteor

Comparing Meteor vs. MEAN

What we liked better
Less code, more functionality
It took us much less preparation time to get productive
with Meteor than with the MEAN stack
It also felt like we were much more productive once we
were up and running: we overestimated our effort by 50%
Blaze easier to learn, whereas Angular can be
overwhelming with all its concepts
More straight-forward code because we rarely had to deal
with keeping track of callbacks and/or promises.

Comparing Meteor vs. MEAN

What we liked better
No time spent on build system (e.g. Grunt, Gulp)
Simple dependency management, with versions always
automatically fixed by Meteor
Only one dependency management system, not two (i.e.
npm, bower)
Much less boiler-plate code to publish data to client
Great and easy to add packages, e.g. to add
authentification for plattforms such as Google, Facebook,
run meteor add accounts‐google, then add {{>
loginButtons}} in your template to show the login UI,
and you're done.

Comparing Meteor vs. MEAN

What we liked less
Best practices on how to organize the code?
Live reload in browser is slower because app must be
assembled and precompiled by Meteor
Testing framework Velocity was a late addition to Meteor,
and there is little support from Meteor for writing tests
For webtests, Velocity uses the Robot Famework which
utilizes the keyword-driven testing approach: however,
we would have preferred a more Protractor-like approach

Comparing Meteor vs. MEAN

What others have to say
"This isn’t your daddy’s JavaScript"

"Week 3: Tasks were being completed faster than ever
before. We did struggle occasionally, but we were able to
find plenty of documentation and support from our super

smart lead developer who we call Google. At the end of one
week, we had completed more in Meteor than the entire

previous month in .NET."
see (2015-09-09)info.meteor.com/blog/from-.net-to-meteor-in-30-days

http://info.meteor.com/blog/from-.net-to-meteor-in-30-days

Meteor
Fullstack JavaScript Development

Retro42: Our prototype application
Why did we choose Meteor?
What is Meteor?
Show me some code!
Comparing Meteor vs. MEAN
More about Meteor ↓

More about Meteor

Meteor Roadmap
Meteor 1.2, Summer 2015

ES2015 (ES6)
1st class Angular and React support

Future Directions
Full-stack reactive SQL
REST and microservices
large app patterns
ES2015 modules, and more

see info.meteor.com/blog/whats-coming-in-meteor-12-and-beyond

http://info.meteor.com/blog/whats-coming-in-meteor-12-and-beyond

More about Meteor

Who is behind Meteor?
Funded: $20 Million series B, May 2015
Active development by full-time employees
Revenue product: Galaxy, a high-availability / large scale
Meteor hosting plattform
Meteor platform is MIT-licensed: host anywhere; you own
the code

from meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

https://meteor.hackpad.com/Meteor-speaker-kit-uaPe3zDDH8z

More about Meteor

Learn Meteor

see , and discovermeteor.com meteor.com

https://www.discovermeteor.com/
https://www.meteor.com/

Conclusion

What's great: Productivity
Initial backlog

At schedules intervals, send reminder mails

Allow user to schedule his questionnaires

When answering questions, show previous answers to the current question

Allow yes/no questions

For numeric questions, show graph of all answers to this question

Show all answers for a selected question

Show questions & answers for a selected session

Show list of sessions for a selected questionnaire

Answer questions for a selected questionnaire

Configure questionnaire for current user

Show questions (question-text only) for a selected questionnaire

Show list of all questionnaires (user-independent) after login

Simple application with Google auth

Deployment Environment Setup

VM Setup including Development Environment

Additional backlog (extract!)
Intro page for non-logged in users for-email UI

Questionnaire Passes View: percentage answered groups

Group Question View groups

Group Pass View groups

Add group users to questionnaire groups

Questionnaire passes: Show some boolean and numeric answers in overview
difficult duplicate UI

Display questionnaire passes in a table

Markdown Support for Text Questions

Add demo data to fixture for-email

Create questionnaire from scratch

Show user notification on missed questionnaire passes

Allow user to delete questionnaire (and its passes)

Allow user to edit questionnaire

Enhance list of sessions for a selected questionnaire with scheduling info

Meteor has been called "embarrassingly easy-to-learn":
We definitively agree.

Conclusion

Should be improved: Test support

↓

Conclusion

Should be improved: Test support
What we missed most about Meteor was in-built support for

unit and integration tests, client- and server-side.

Also, we would like to see alternatives to the Robot
framework for web tests.

Conclusion

On a tech radar, give it a "trial"

Backup Slides

Backup Slides

Pair Programming Recommended

Backup Slides

What about Performance?
Comparing Blaze, React Meteor, Angular-Meteor, Angular 2

with Meteor, with "Waldo Finder".

see info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-
with-meteor

↓

http://info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-with-meteor

Backup Slides

What about Performance?

see info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-
with-meteor

http://info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-with-meteor

Backup Slides

What about Performance?

see info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-
with-meteor

http://info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-with-meteor

Backup Slides

What about Performance?

see info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-
with-meteor

http://info.meteor.com/blog/comparing-performance-of-blaze-react-angular-meteor-and-angular-2-with-meteor

Backup Slides

JavaScript: Maintenance...?
Stefan Hanenberg et al. An empirical study on the impact of static typing

on software maintainability. Empirical Software Engineering,
Oct. 2014, Vol. 19, No. 5, pp 1335-1382.

Static type systems help use a new set of classes – an effective form of
self-documentation
We believe the most important result is that the static type systems
showed a clear tendency in class identification tasks,
and that we found a first indicator that this is caused by a reduced
navigation effort.
Static type systems make it easier for humans and reduce the effort to
fix type errors.
For fixing semantic errors, we observed no difference with respect to
development times, and static type systems may not be helpful in
preventing semantic errors.

preventing semantic errors.

Backup Slides

JavaScript: Best Practices!
急がばまわれ

Isogaba maware: When you are in hurry, take your time

Testing: Automated tests at all levels
SOLID design, and remember the Law of Demeter
Dependencies: Use a consistent namespaces scheme
Documentation: Document your APIs
Continuous Integration, ...

