Diss. ETH No. 15035

Theory of Computation as a Vehicle for
Teaching Fundamental Concepts of
Computer Science

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Sciences ETH Ziirich

presented by

Raimond Reichert
Dipl. Informatik-Ing. ETH

born November 25, 1973, of German Nationality

accepted on the recommendation of

Prof. Dr. Jirg Nievergelt, examiner
Prof. Dr. Horst Miiller, co-examiner
Dr. Werner Hartmann, co-examiner

2003

Acknowledgements

Many people have contributed to the development of the Kara environments,
and I wish to express my gratitude to all of them.

Jiirg Nievergelt and Werner Hartmann conceived the idea behind the Kara en-
vironments. They gave me the opportunity to realize the idea and continuously
supported me during the development of the environments. Jiirg Nievergelt
kept a critical watch on Kara as it grew up, always trying to keep things as sim-
ple as possible, but not simpler. Werner Hartmann always reminded us of the
users of Kara and helped to ensure that the environments are as user-friendly
as possible.

Markus Bréndle and Tobias Schlatter developed two offsprings of Kara. To-
gether, they implemented the MultiKara environment, and Markus Bréandle
implemented the TuringKara environment.

Nicole V&lki suggested using a pretty ladybug as the principal actor of the
environment and designed the Kara ladybug. Reto Lamprecht later revamped
the bug, and is also responsible for the user-friendly state machine diagram
editor. They helped make Kara not only an academic but also a popular success.

Horst Miiller provided us with his theorems about the capabilities of finite state
machines working under various constraints. He also pointed us to fascinating
topics related to finite state machines such as busy beavers and ants.

Remo Meier and Samuel Ziircher jointly developed the LegoKara environment
to allow users to program a physical robot. They mastered the difficult challenge
of building a robust Lego robot.

Horst Gierhardt has not only provided us with encouraging feedback but also
with a wealth of teaching materials. He further helped popularize the Kara
environments in Germany.

Last but not least, Myke Naf read this text with incredible care and helped
improve it. As an ‘outsider’, he questioned many hidden assumptions.

Finally, many others have contributed to the Kara environments and supported
me during the development: Beate Bernhard, Phillip Boksberger, Juta Bonan,
Hans Fischer, Diana Hornung, Philip Meier, Marc Pilloud, Thomas Suter, Vin-
cent Tscherter, Floris Tschurr, as well as all those I forgot to mention.

il

Abstract

In today’s Information Society, knowledge of the fundamentals of information
and communication technology (ICT) is a key qualification and must become
part of general education. The concepts of formalization and programming are
at the heart of computer science. Teaching these concepts as part of general edu-
cation is a difficult challenge. Existing approaches are typically time-consuming,
yet time is a scarce resource in school. There is a need for intuitive, user-friendly,
high-quality educational software environments to support teaching and learn-
ing the basics of ICT within the limited time available.

Our approach uses the theory of computation as a vehicle for teaching se-
lected fundamentals of computer science. The main contributions of this disser-
tation are the Kara programming environments described in this text. One goal
of the environments is to allow users to write their first program successfully
within an hour. The environments are based on finite state machines and offer:

1. An introduction to programming targeted at people with no prior pro-
gramming experience (the Kara environment).

2. An introduction to the theory of computation based on two-dimensional
Turing machines for students who study the theory of computation (the
TuringKara environment).

3. An approach to teaching basic concepts of concurrency in an illustrative
manner which can be used from elementary to advanced settings (Multi-
Kara).

4. A smooth transition to programming in Java for people not familiar with
Java or any similar programming language (JavaKara).

The widespread use of the Kara environments in many schools at different levels,
and the highly positive feedback from teachers and students, have convinced us
that our theory-based approach is successful and worth pursuing.

Zusammenfassung

In der heutigen Informationsgesellschaft sind Kenntnisse der Grundlagen von
Informations- und Kommunikationstechnologien (ICT) eine Schliisselqualifika-
tion und miissen Teil der Allgemeinbildung werden. Zentrale Themen der Infor-
matik sind die Konzepte der Formalisierung sowie des Programmierens. Das Un-
terrichten dieser Konzepte als Teil der Allgemeinbildung ist eine anspruchsvolle
Herausforderung. Existierende Ansétze sind typischerweise zeitaufwendig, ob-
wohl Zeit in Schulen eine knappe Resource ist. Es gibt einen Bedarf fiir in-
tuitive, benutzerfreundliche, qualitativ hochstehende Lernumgebungen als Un-
terstiitzung fiir das Lehren und Lernen der Grundlagen von ICT im Rahmen
der zur Verfiigung stehenden Zeit.

Unser Ansatz verwendet die theoretische Informatik als Mittel zum Zweck,
um ausgewihlte Grundlagen der Informatik zu unterrichten. Die Hauptbeitriage
dieser Dissertation sind die Kara-Lernumgebungen, die in diesem Text beschrie-
ben sind. Ein Ziel der Umgebungen ist es, den Benutzern zu ermdglichen,
innerhalb einer Stunde ihr erstes Programm erfolgreich schreiben kénnen. Die
Umgebungen basieren auf endlichen Automaten und umfassen:

1. Eine Einfiihrung in die Programmierung, die sich an Leute ohne Program-
miererfahrung richtet (die Kara-Umgebung).

2. Eine Einfiihrung in die theoretische Informatik anhand von zweidimen-
sionalen Turing Maschinen fiir Studierende, die sich mit der Theorie der
Berechenbarkeit auseinander setzen (die TuringKara-Umgebung).

3. Einen Ansatz zum Unterrichten grundlegender Konzepte der nebenlaufigen
Programmierung in einer anschaulichen Art und Weise, der auf verschiede-
nen Stufen eingesetzt werden kann (MultiKara).

4. Einen reibungslosen Ubergang zum Programmieren mit Java fiir Leute,
die mit Java oder &hnlichen Sprachen nicht vertraut sind (JavaKara).

Die grosse Verbreitung der Kara-Umgebungen an vielen Schulen auf unter-
schiedlichen Stufen und das sehr positive Feedback von Lehrenden und Lernen-
den haben uns iiberzeugt, dass der Theorie-basierte Ansatz von Kara erfolgreich
ist und dass es sich lohnt, diesen Ansatz weiter zu verfolgen.

vii

Contents

1 ICT: A Challenge for the Information Society
1.1 Information and Communication Technology as Part of Education
1.2 Computer Science as Part of General Education
1.3 Teaching Programming: From Intuition to Formal Specification .
1.4 Approach and Contributions of Thesis

2 Theory of Computation as a Vehicle for Teaching Programming
2.1 Teaching Programming based on the Theory of Computation
2.2 Requirements of Educational Programming Environments
2.3 The Kara Programming Model

3 Kara: Introduction to Programming for Beginners
3.1 The Kara Environment
3.2 Examples
3.3 Conclusions

4 TuringKara: Two-Dimensional Turing Machines
4.1 The Rationale for TuringKara’s Two-Dimensional ‘Sheet’
4.2 The TuringKara Environment
4.3 Examples
4.4 Related Worko
4.5 Conclusions L

5 MultiKara: Introduction to Concurrent Programming
5.1 The Challenges of Concurrent Programming
5.2 MultiKara: Educational Concurrency Laboratory
5.3 The MultiKara Environment
5.4 Concurrency Mechanisms in MultiKara
55 Exampleso
5.6 Related Work oo
5.7 Conclusions L

6 JavaKara: A Smooth Transition From Kara to Java
6.1 Educational Goals and Scope of JavaKara
6.2 The JavaKara Environment
6.3 Examples
6.4 Related Work
6.5 Conclusionso

ix

15
15
17
24

25
25
26
28
31
32

33
33
34
35
38
42
48
49

Experience and Evaluation

7.1 Kara: Introductions to Programming
7.2 TuringKara: Theory of Computation
7.3 MultiKara Experience L.
7.4 JavaKara: Introductory Java Courses
7.5 Lessons Learned

Environments for Learning Programming

A.1 Logo and the Turtle Geometry
A.2 Karel, the Robot,
A.3 Successors of Karel the Robot
A.4 Game-like Environments Targeting Children
A.5 Frameworks for Learning Programming
A.6 Languages Designed for Education

User Interface Design of the Kara Environment

B.1 The World Editor Window
B.2 The Program Editor Window
B.3 Executing Programs

Architecture and Design of the Kara Environments

C.1 Overall System Architecture
C.2 Putting it All Together: The ide Packages
C.3 Implementation Issues

61
62
63
64
64
64

67
68
69
71
72
73
75

77
7
78
79

Chapter 1

ICT: A Challenge for the
Information Society

In today’s Information Society, mastery of information and communication tech-
nologies (ICT) is a key qualification. In this chapter, we argue that education
in computer science needs to become part of general education. More specifi-
cally, we further argue that the focus should be on the foundations of computer
science. We propose that one core topic of such an education should be the idea
of formalization. The goal is to teach the idea that in order to get computers to
do anything, one needs to express the instructions in a formally defined system.

1.1 Information and Communication
Technology as Part of Education

In the past 60 years, information and communication technologies have trans-
formed the industrial society into the information society. This transformation
has had an impact on all aspects of life, from the economy to social behavior
to the sciences. The rapid evolution of the ICT also affects our expectations of
education. Two kinds of forces influence the future of education:

ICT as a Subject. There is a strong demand for information and com-
munication technology to become part of general education: to be learned,
in appropriate steps, by practically everybody, throughout all stages of the
educational life cycle, from elementary schooling to life long learning.

ICT as a Tool. There is also a strong demand for ICT to be used as a
delivery tool to present information anytime, anywhere, and to enhance
the learning process thanks to a quality of interaction unequaled by any
previous educational technology.

We focus on ICT as a subject and on the need for ICT education to become part
of education at different levels. For our purposes, we focus on formal education,
from primary school to tertiary education. We view the process of education as
resting on three pillars:

Literacy. High priority in public school is typically assigned to content
that is relevant to today’s job world. Folklore identifies “the 3 R’s: reading,
riting, 'rithmetic” as the main task of elementary school. These skills
have become a necessary part of general education as a consequence of
the industrial age. The OECD’s definition of reading literacy for its PISA
assessments reflects this [OEC02]: “Reading literacy is understanding,
using, and reflecting on written texts, in order to achieve one’s goals, to
develop one’s knowledge and potential, and to participate in society.”

General Education. In addition to tangible, sellable skills, education
has always included topics about which most adults later say “I have
never used them since I left school”. This category includes the majority
of topics any student endured, namely most of those outside the profession
chosen later. For example, general education includes studying a certain
amount of literature, as well as learning how mathematical proofs work.
The goal is to motivate students to develop intellectual curiosity.

Critical Thinking. Critical thinking encompasses the ability to under-
stand, reflect, and discuss matters relevant to one’s own life. For example,
literacy ensures that we can read movie or book reviews; general education
provides us with the relevant background knowledge. Critical thinking
enables us to form our own opinion by a process of actively gathering,
analyzing and evaluating information.

Each of these three components of education is highly relevant to an ICT edu-
cation. Let us briefly argue the importance of each component.

Computer Literacy. Webster’s New College Dictionary gives the follow-
ing definition of computer literacy: “the ability to use a computer and its
software to accomplish practical tasks”. The ability to use computers is
important because it is a prerequisite for entering the work force. This
definition can be viewed as a common denominator of most definitions of
computer literacy.

General Education in Computer Science. In the rapidly developing
field of ICT, students need a deeper understanding of the potential of
computer technology, its possible applications, and its limitations. Mere
literacy cannot provide this kind of understanding. General education in
computer science must teach the timeless foundations of computer science.

Critical Thinking. Because of the importance of ICT in our society, it
is indispensable for students to be capable of following and understanding
future developments of this technology.

ICT education calls for all three aspects, literacy, general education, and critical
thinking. In the following, we focus on the content of computer science education
as part of general education.

1.2 Computer Science as
Part of General Education

There is a lot of disagreement about the content of computer science education
as part of general eduction. T'wo of the main reasons for this disagreement are
the rapid evolution of computer science education, and the debate on the nature
of computer science itself. It is important to keep these two reasons in mind
when arguing about the content of future computer science education.

The first difficulty in defining computer science education is the pace of evo-
lution of the field. As the field of computer science evolved at a rapid pace in
the last forty years, computer science education lagged behind. It is instructive
to consider the evolution of the ACM’s model curricula. Not only did the con-
tent definition evolve, the structure in which the curricula organizes its body of
knowledge evolved as well. Curriculum 68 divided computer science into three
large divisions: information structures and processes, information processing
systems, and methodologies. These were further subdivided into a total of 17
topics such as programming languages, translators and interpreters, data pro-
cessing and file management [ACHT68]. Its content reflected the technology of
its time. Curriculum 91 divided computer science into nine subareas [Tuc91].
New topics included, for example, human-computer interaction and software
engineering, reflecting the trend towards larger software with more emphasis on
their user interfaces. The most recent draft of Curriculum 2001 discerns four-
teen subareas, where the additional subareas include, for example, net-centric
computing and social and professional issues, reflecting the growth of the Inter-
net as well as the growing importance of social issues [AI02]. In summary, the
development of the ACM curricula has been driven by technology. Hartmann
and Nievergelt point out that the development of ICT education in general has

been driven by technology instead of focussing on the long-lived fundamentals
[HNO02].

The Debate on the Nature of Computer Science:
An Educational Challenge

The second difficulty in reaching agreement on the content of computer science
education is the debate on the nature of the field. There is an abundance
of conflicting definitions of computer science. One reason for this is given by
Dijkstra who argues that information and communication technologies represent
a revolution, not merely an evolution of prior knowledge or technology [Dij89],
[Dij86]. He outlines two “radical novelties” which computers embody:

Conceptual Depth. If one considers a town, many specialists are needed
to build one, from town planners to architects to physicists. Dijkstra
argues that, in marked contrast, a programmer “has to be able to think in
terms of conceptual hierarchies that are much deeper than a single mind
ever needed to face before”.

Large-scale Digital Device. While there were discrete machines before
the computer, computers are the only large-scale digital devices. The dis-
crete nature of computers bestows upon them the “uncomfortable property

that the smallest possible perturbations — i.e., changes of a single bit —
can have the most drastic consequences”.

With regards to the above two properties of computer science, Hartmanis takes
a similar view [Har94]. On the conceptual depth of computer science, he quotes
Knuth as saying that computer scientists “are individuals who can rapidly
change levels of abstraction, simultaneously seeing things ‘in the large’ and
‘in the small’ 7. As to the computer itself, he points out that not only is a
computer a large-scale digital device, it is also a “universal device which can be
instructed to perform any computation [...] but which [...] must be controlled
with unprecedented precision”.

The conceptual depth of computer science may explain why it encompasses
both a mathematical facet and an engineering facet. There is disagreement over
which facet is more important. The mathematical facet is favored and advo-
cated, for example, by Dijkstra who dismisses software engineering altogether
as a “doomed science” [Dij89]. The engineering facet is favored, for example, by
Brooks in his talk The Computer Scientist as a Toolsmith, where he emphasizes
that computer scientists engineer systems of “arbitrary complexity”, and that
a computer scientist as “a toolmaker succeeds as, and only as, the users of his
tool succeed” [Bro96].

Others argue that computer science is not either a mathematical science or
an engineering science, but both. For example, the report Computing as a Dis-
cipline by Denning et al stresses the fundamental importance of both facets,
intending to “project an image of a technology-oriented discipline whose fun-
damentals are in mathematics and engineering” [DCG*89]. The report defines
three paradigms, or cultural styles, by which computer scientists work (figure
1.1): theory (the mathematical roots of computer science), abstraction (the ex-
perimental sciences’ aspects), and design (engineering). This reflects Dijkstra’s
observation on the conceptual depth of computer science: one paradigm is not
enough to cover it all.

Paradigm Description in keywords | Examples

Theory Definitions and axioms, the- complexity theory, archi-.
orems, proofs, interpreta- tecture (logic), and pro-
tion of results gramming languages (for-

mal grammars and au-
tomata)

Abstraction | Data collection and hy- modelling potential algo-
pothesis formation, mod- rithms, data structures,
elling and prediction, de- architectures (von Neu-
sign of an experiment, mann)
analysis of results

Design Requirements, specifica- developing a system or a
tions, design and imple- component of a system to
mentation, testing and solve a particular problem
analysis

Fig. 1.1: Denning et al’s three-paradigm approach to computer science topics

Another view of computer science, which also stresses its multi-faceted na-
ture, is given by Nievergelt [Nie95]. Computer scientists often divide complex
problems into individual layers. Nievergelt applies this method to computer
science itself and presents a layered tower of computer science consisting of the
theory of computation, algorithmics, engineering, and applications (figure 1.2).
The size of the individual layers hints at their relative emphasis, in a number of
respects: recognition by society, economic potential, and number of jobs. The
tower points out that many different kinds of activities take place under the
name of computer science and illustrates the phrase “conceptual depth”.

Applications

e.g. management information systems, GIS, ...,
CA-x in diverse guises.

»Sell a solution”

Technology driven: ,today, Windows XP!"

System development

Design and implementation of hardware and software, of
systems of general applicability. e.g. operating systems,
reservation systems, text processors.

,,Programming in the large”

Algorithmics

Design, analysis, optimization, testing of
standard algorithms, e.g. library software

,,Programming in the small”

Theory
abstract, mathematical, objective,

N universally valid, ,possible or not
% possible”. Results timeless, like laws of %

nature of natural sciences.

Fig. 1.2: Nievergelt’s ‘tower’ of computer science

The Content of Computer Science Education:
Focussing on Foundations

Computer science education as part of general education should concentrate on
the long-lived fundamentals, because of the broad nature of the field. As an
analogy, consider another engineering subject, civil engineering. Civil engineer-
ing and its relation to other sciences can be presented in a tower-like structure
which is comparable to that of computer science: core physics, applied mechan-
ical laws, engineering techniques, and applications. General education focusses
on the foundation of civil engineering, on physics. It does not delve too deeply
into the engineering aspects.

Hartmann and Nievergelt make the case that computer science education as
part of general education, in analogy to long established subjects like physics,
should focus more on the foundations of computer science [HN02]. Emphasiz-
ing timeless concepts helps avoid short-lived, technology-driven developments.
It would be challenging and instructive to develop a whole computer science

education curriculum along the idea of concentrating on the foundations. But
the design of such a curriculum is outside of our scope and must be the topic of
a much broader discussion.

In the following, we concentrate on one core aspect of computer science:
formalization in the form of programming. The emphasis is on the need to
formalize instructions to a computer in a suitable, formally defined system. Our
focus is not on programming per se, nor on a particular programming language.

1.3 Teaching Programming:
From Intuition to Formal Specification

We argue that programming should be part of general education, not because
of any direct utilitarian benefit, but in order to gain a personal experience as
to what it means, and what it takes, to specify processes that evolve over time.
Understanding this concept, and providing students with tools to gain hands-
on experience, is important because modern society relegates an ever-growing
number of every-day tasks to machines. These machines act as controllers that
initiate actions based on their current state and on received inputs. The number
of possible behaviors, of sequences of actions triggered by different environmen-
tal conditions, is usually so huge as to be impossible to enumerate. Yet, we aim
to be sure that each and every possible behavior, of which only a tiny fraction
will ever be played out, is ‘correct’ in some precise sense. The way to do that
is to write a specification that captures the practical infinity of processes that
may evolve over time, depending on received inputs. An algorithm is such a
formal specification, and the concept of algorithm is surely among the most
fundamental concepts required to understand computers.

In order to write programs, it is necessary to make the transition from an
intuitive understanding of how an algorithm is supposed to work to a formal
specification of the actual algorithm. This idea is one of the core ideas of
computer science and therefore part of any computer science education. Knuth
defines computer science as the study of algorithms where an “algorithm is
a precisely-defined sequence of rules telling how to produce specified output
information from given input information in a finite number of steps” [Knu74].
He outlines what he calls the educational side-effects of studying algorithms:

It has often been said that a person does not really understand
something until he teaches it to someone else. Actually a person
does not really understand something until he can teach it to a
computer, i.e., express it as an algorithm. [..] The attempt to
formalize things as algorithms leads to a much deeper understanding
than if we simply try to comprehend things in the traditional way.

The fact that formalization and programming are at the heart of computer
science is also reflected by the ACM Curriculum 91. It lists 12 “recurring prin-
ciples” of computer science [Tuc91], one of which is the principle of “conceptual
and formal models”. It is defined as “various ways of formalizing, characterizing,
visualizing and thinking about an idea or problem. Examples include formal
models in logic, switching theory and the theory of computation, programming
language paradigms based upon formal models [...]”. The curriculum also argues
that programming education plays a central role in computer science education:

Programming occurs in all nine subject areas in the discipline of
computing. It is part of the design process, it is used to implement
the models that occur in the abstraction process, and it even oc-
curs sometimes in the process of proving a theoretical result. [...]
programming is an extension of the basic communication skills that
students and professionals normally use in day-to-day communica-
tion.

1.4 Approach and Contributions of Thesis

The concepts of formalization and programming are at the heart of computer
science. Teaching these concepts as part of general education is a difficult chal-
lenge, and existing approaches are unsatisfactory. There is a need for intuitive,
user-friendly, high-quality educational software environments to support teach-
ing and learning.

We claim that the theory of computation is an excellent vehicle for teaching
the fundamentals of computer science. Our approach stresses the transition from
an intuitive understanding of a problem solution to its formal description. We
propose to use finite state machines as the model of programming in educational
programming software. Chapter 2 describes this approach and the rationale for
it in detail.

To support our claim, we have developed the Kara environments. These envi-
ronments are educational software laboratories for teaching some fundamentals
of computer science. Figure 1.3 shows an overview diagram of the environments.

Practice Theory
2 - v
o Kara - programming 2
£ with state machines £
] an
1) ABE A @D 2
LY YN & S
L
i
3 Saresmncn
LMY =
EL Q@ ==
e L]
JavaKara - MultiKara - concurrent TuringKara - 2d Turing
programming in Java programming machines illustrated
& B8 #
public woid syfroguami) | TR SR 110111
hile ['kace,zceePronti}) | REBHHEEBR 1001101
Tasa.aova ()5 L R
] LS summe 1
3 0 A R R .
g OO0 (i ;
g 200000 s
3 3
= <
Practice Theory

Fig. 1.3: The Kara environments

The Kara environments are the main contribution of this thesis. They ad-
dress the following topics of computer science education:

Kara An environment for introductory programming based on finite state
machines, described in Chapter 3. This is the basic entry-level environ-
ment, focussing on sequential programming concepts. There is a long
tradition of so-called mini-environments for teaching programming which
is discussed in Appendix A.

TuringKara An introduction to the theory of computation based on
two-dimensional Turing machines, described in Chapter 4. The two-
dimensional model is used because it greatly simplifies solutions in com-
parison to one-dimensional tape Turing machines.

MultiKara An approach to teach some basic concepts of concurrency in
an exploratory software laboratory, described in Chapter 5. We introduce
a well-defined classification of concurrency primitives and a new synchro-
nization primitive called the “meeting room”.

JavaKara An environment which offers a smooth transition to Java pro-
gramming, described in Chapter 6. It introduces the basic concepts of
imperative programming such as control structures and primitive data

types.

Sample programming examples are presented for each environment. These ex-
amples are selected to illustrate important ideas that can be taught when using
the Kara environments in class. All examples, consisting of problems and their
solutions, are integrated into the environments themselves. They are therefore
only presented in broad terms in this text.

User interfaces play a decisive role in educational software. Some important
considerations in the development of the Kara environments are discussed in
Appendix B. The architecture and design of the software itself are described in
Appendix C.

Our experience, summarized in Chapter 7, has convinced us that the theory-
based approach is worth pursuing. This conviction is strongly supported by the
fact that many schools use the Kara environments at different levels.

Chapter 2

Theory of Computation as
a Vehicle for Teaching
Programming

This chapter presents our approach to teaching introductory programming as
part of general education. We pursue a theory-based approach, using a model
of programming which is rooted in the theory of computation. A good way to
teach programming as an educational exercise, free from utilitarian constraints,
is to use toy environments. These environments are designed to illustrate se-
lected concepts in the simplest possible setting. The fundamental concepts of
programming may be intellectually demanding, but they are not complex in the
sense of requiring mastery of lots of details.

2.1 Teaching Programming based on
the Theory of Computation

To teach the concept that computers are formal systems, we must choose a
formal system within which we can express algorithms in a clear and concise
manner. There are many possibilities — each programming language represents
such a system. In the past, professional programming languages have typically
served as the vehicle of choice for teaching programming, mostly in one of two
approaches.

The first approach to teaching programming is to introduce languages such as
Java or C# in a step-by-step fashion, where each step covers one construct of the
language. Most introductory programming textbooks proceed in this manner.
However, there are three objections to this approach. First, these languages are
made for the professional programmer and are not tailored to the needs of intro-
ductory programming. They are complex and typically object-oriented, posing
an additional challenge for the teacher: whereas object-orientation is relevant
to “programming in the large”, it is a non-trivial additional hurdle for begin-
ners. Second, this approach emphasizes the structure and syntax of a particular
language instead of the design of solutions. Third, the tools used in devel-
opment are professional programming environments with project-management

10

and debugging facilities. They are complicated to handle and not suited for an
introduction to programming.

The second approach to teaching programming is to use a mini-language
to provide a more functionally oriented introduction to programming. Mini-
environments provide students with practical, hands-on experience in environ-
ments tailored to their capabilities and needs. The problem with using mini-
languages based on real-world languages is that they are inherently complex. It
is unfortunate that much of the inherent conceptual complexity of the underlying
programming language is carried over to the resulting mini-languages. Another
problem is that real-world languages evolve constantly, that new languages are
created every few years. Mini-environments based on real-world languages must
therefore evolve as well.

The theory of computation offers a way out of the problems of complex-
ity and constant evolution of the above approaches to teaching programming.
We propose to use computational models as the models of programming in
mini-environments. These models have properties which are highly desirable in
introductory programming models. In education, we should strive for utmost
conceptual simplicity. Theoretical models of computation are designed to be as
simple as possible. They contain only a small number of semantically simple
operations. For real life objectives, this may pose a formidable stumbling block
and make many tasks difficult beyond practicality. However, in an educational
setting, the problems to be solved can be chosen so as to be easily solved within
the formal system. Hartmann and Nievergelt argue that the concepts of the
theory of computation are not to be viewed only as an exotic specialty, but
rather as an educational tool whose potential in computer science education is
not yet fully exploited [HNO02].

2.2 Requirements of Educational
Programming Environments

Mini-environments have a long tradition, with prominent exponents such as
the Turtle Geometry of Logo, and Karel the Robot. These and other mini-
environments are described in more detail in Appendix A. These environments
should satisfy two basic requirements: they should have small languages with
simple semantics, and the user should program some type of virtual actor so
that the actions of the programs can be easily and intuitively visualized. For
the Kara environments, we consider the following extended list of requirements:

Content. The content of educational software should be selected based on
the notion of Bruner’s Fundamental Ideas to guarantee that essential and
long-lived topics are taught [Bru60]. On the one hand, this requirement
stems from our view of computer science education as part of general
education. On the other hand, we emphasize long-lived concepts because
software development is highly cost-intensive. Educational software should
be designed with the goal of longevity in mind, so that it will not be
necessary to update its content every other year.

Scope. The software should be broad in scope with respect to the range
of problems students can tackle, from simple get-to-know problems to

11

tough-to-solve problems. Ideally, these problems cover all levels of Bloom’s
taxonomy of the cognitive domain in order to provide for intellectual chal-
lenges on a number of different levels [Blo56].

Time. In general education, learners must divide their time between many
different subjects. Educational software should therefore allow its users
to study the underlying content in relatively little time.

Interactivity. The software should allow for what Papert calls construc-
tionism. Students learn best when they are in the active roles of designers
and constructors [Pap80]. He argues that this “happens especially felic-
itously in a context in which the learner is consciously engaged in con-
structing a public entity, whether it is a sand castle on the beach or a
theory of the universe.” Software to support this idea must offer a high
level of interactivity to allow users to create their own artifacts, and to let
them watch the system react.

Usability and Visualization. Users need time to get to know the user
interface of educational software. Since the user interface is not the subject
of study in itself, it should be as self-explanatory as possible, minimizing
the period of adjustment. It is further desirable to visualize the content to
make it easier to understand. In educational programming environments,
visualizing the execution of a program is particulary important. It helps
students visually track what their programs are doing.

Nintendo-like Software. A further requirement of educational software,
in particular of educational programming environments, is given by Guz-
dial and Soloway in Teaching the Nintendo Generation to Program [GS02].
The article argues that the high drop-out rates in computer science courses
are due to educators having an outdated view of computing and students.
Whereas “Hello World” got students excited when computers were still
text based, today’s “Nintendo generation” grows up in multimedia envi-
ronments. Educational software needs to correspond to these multimedia
environments and to the students’ every day use of computers. Doing so,
it extrinsically motivates learners, boosting students’ exploration of the
content underlying the software.

Ideally, mini-environments satisfy all of the above criteria. In particular, we
believe that good educational software profits much from a content-selection
based on the theory of computation. The main reason for this belief is that
a good theory captures the essence of a field of study. It minimizes complex
structures while maximizing the range of its applications. For example, there
are several programming paradigms (e.g. imperative, object-oriented, logical,
functional, distributed) and thousands of programming languages. In a compu-
tational sense, the Turing-machine model subsumes all these approaches, yet it
is extremely simple. The Church-Turing hypothesis states that every computer-
solvable problem can be solved by a Turing-machine — although the solution
may be quite complex.

The Nintendo requirement may seem to contradict our theory-based ap-
proach to educational software. This is not the case, as the saying that “nothing
is more practical than a good theory” applies to our approach. We do not imply

12

that we strive to teach the theory itself. On the contrary, we use the theory as
a means to an end, to teach core issues on the basis of accessible, convincing
examples.

2.3 The Kara Programming Model

The Kara programming model uses the theory of computation as a vehicle for
teaching introductory programming and is based on the model of finite state
machines. Using state machines to control toy robots was proposed by Niev-
ergelt [Nie99]. The idea is to have a programming model which brings together
theory and practice in a novel way. Using finite state machines has important
advantages:

Every day analogies. The concept of finite state machines can be ex-
plained to students in terms of every day devices such as light switches,
ticket machines, VCRs, or traffic lights.

Natural way to control a robot. A finite state machine basically re-
acts to inputs, the reaction depending on the current state. This is a
natural way to specify the behavior of a robot which has only local infor-
mation available. If the robot lives in a world which evolves over time, and
if it may modify the state of the world itself, then this model is very pow-
erful. It is used in experiments in artificial intelligence (see, for example,
Braitenberg [Bra86], Brooks [Bro91]).

Visual programming. Finite state machines have a standard graphical
representation, basically circles connected by arrows. They can easily be
constructed by purely visual programming. This is a practical advantage
for beginners who are often befuddled by textual syntax.

The concept of finite state machines is also interesting in its own right, though
this may not be of immediate concern to programming novices. Every computer
science student studies them, typically in courses on the theory of computation
and in courses on logic design. They also play an important role in modelling
the behavior of software systems. The UML standard includes state charts for
this purpose [OMGO02].

Each Kara environment is designed to illustrate some particular aspect of
programming, so the precise definition of the world/actor and programming
model depends on the individual environment and is described in detail in the
respective chapters. Here, we only describe the basic idea of the environments
in broad terms:

World and Actor. The actor is a ladybug in a simple, grid-like world
(figure 2.1, left). The bug has sensors such as tree in front?, on leaf?, and
it has commands like move, turn left, or pick up leaf.

Finite State Machine. The ladybug is controlled by a finite state ma-
chine. Figure 2.1 (right) shows a sample state machine which makes the
bug walk in a circuit bordered by trees. For each transition in the state
machine, a Boolean expression with the sensors of the actor as variables
defines the conditions under which the transition is chosen. For example,

AR
R L
n W RR R
n RAaRRR R
n RRRR | R
. RRAR RR
L n

n AR
AR

walk |

X

x

L : % IKara executes: Next State:

[
[

ho

yes

[
[

i

@ walk

walk

[@
" @

0

M)

TN @@ |w=

Fig. 2.1: Finite state machine to control circuit walk of ladybug

13

in state walk, if there is a tree to the left, and a tree in front, but there
is no tree to the right, then the third transition will be chosen and the
ladybug will turn right and step ahead.

The Kara programming model bridges the gap between the theory of compu-
tation and the more practical aspects of introductory programming. Figure 2.2
contrasts some typical properties of the semantics of computational models with
the corresponding semantic properties of programming languages such as C+-+
or Java. The Kara programming model preserves the desirable properties of
computational models in a programming model suitable for a mini-environment.

Computational Models

“Programming Languages”

{ concise, non-redundant

{ small, self-contained

{ special or general purpose

{ abstract
(e.g., manipulates symbols)

{ redundant
(i.e., multiple ways to achieve a goal)

$ large
(i.e., language plus class libraries)

{ general purpose

{> concrete
(e.g., manipulates text, screen etc.)

Kara Programming Model

{ concise, non-redundant
{ small, self-contained

{ special-purpose

{ concrete
{ easy-to-use

Fig. 2.2: Computational Models vs. Programming Languages

The idea of using finite state machines in introductory programming courses
has also been proposed by Parnas in Teaching Programming as Engineering
[Par96]. It is interesting to observe that even though the context of his argu-
ments is different from ours — he argues the case for the education of software
engineers — they still reflect our arguments very well. He sketches the mathe-
matical content of a first course on programming for software engineers where
the first topic is finite state machines:

14

It is essential that students see computers as purely mechanical de-
vices, capable of mathematical description. [...] Students are also
taught how to design finite state machines to perform simple tasks.
[...] The emphasis is on understanding how the machines function
and on designing them.

Parnas does not use finite state machines in the context of mini-environments for
introductory programming, but the rationale he gives for using them is similar
to ours. He also comments succinctly on the gap between theory of computation
and programming:

Instead of reacting to rapid change by focusing on fundamentals,
programming books and courses try to keep up with the latest de-

velopments. [...] The few books that claim to focus on fundamentals
are highly theoretical. [...] students are given theories that, while
they don’t go out of date, do not seem relevant to the task of pro-
gramming.

The Kara programming model tries to address this situation by bridging the
gap between theory and practice. We are convinced that students will learn to
focus on problem-solving skills rather than on a particular tool in the form of
some programming language. We are also convinced that the Kara model is
concrete enough for students not to get lost in the theory of computation itself.
Rather, it enables them to use the theory as a means to an end.

Chapter 3

Kara: Introduction to
Programming for Beginners

The Kara environment serves as a vehicle to introduce the basics of sequential
programming to novices (see [RNHO00], [HNRO1], [RNHO01]). Kara shows that
basic ideas of programming can be learned in a playful, enjoyable environment.
Fundamental ideas such as correctness proofs and Boolean logic can be taught
in an illustrative manner.

3.1 The Kara Environment

In the Kara environment, the ladybug lives alone in a flat grid world. The
number of types of objects in the world, as well as the number of sensors and
commands of the actor is kept to a minimum. Figure 3.1 shows (left) the main
window with the world editor, the commands to control the bug, and the buttons
to control program execution; (right) the visual program editor. In the example
shown, the ladybug has to follow a trail of leaves and eat them up. The program
is a one-state solution to this problem.

There are only three types of objects in the world: unmovable tree trunks,
mushrooms which the bug can push around, and leaves, of which it can lay
down or pick up any number. The bug itself is placed on either a free square
or a square occupied by a leaf, facing one of four possible directions. Sensors
inform it about its immediate surroundings:

L.
& Is there a tree on the square in front?
0 = _
Is there a tree on the square to the right?
il

Is there a tree on the square to the left?

Is there a leaf underneath?

ot Bk

Is there a mushroom in front?

15

16

=lolx *: Kara, the programmable ladybug =10l
[untitled 1 | pacmanz.kara |
Programming BEa B BE Exercises = =B @
K rKara's World ~World /W
) L4
e » -
o e 12 1 -
o b EEE | 4
kR @ @
® % ® =
i *# ## * g ‘: 58| Kara executes: Next State:
'& ! H I pacman -
e - e
1| R kemsd {u :
= oL 00000
peed of ion of prograny — e
Ew i > um m

The bug actor can execute five primitive actions: advance one square in the
current direction; turn right or left by 90° on the current square; put down or
pick up a leaf. The world is a torus. When the bug steps off the world, it will

Fig. 3.1: The Kara environment

reenter from the opposite side.

A number of exercise examples are integrated in the environment. An exer-
cise consists of a problem statement, sample test worlds, and solutions (figure
3.2). Solutions have a description, and users can load the solution program into
the program editor. Some exercises have a test case module which runs a user’s
program against a number of automated test cases and checks whether they

satisfy the specification of the solution of the problem.

B el

|loraving triangtes (mediumy ~]

|[praving triangles (medium) ~]

Task | Worlds |Solution |

Task | Worlds [Solution |

3
b
&
i &
b 4
EE Lkl
pEEEs

Program ara to incrementally draw a triangle until he is stopped
bythe user.

T pe———
1"O0000000 wres -
. 9000000000000 [-

Kara draws the triangle line by ling, fram |eft to right using the
state"ga right' and from rightto left using the state "go 18", He
always "copies’ an existing line to the row below. When he
reaches the end of the eurrent row, he lays down the utmost
cloverleaf of the line after the next ane. Then he changes the
state and starts copying the next row.

| Show program

Fig. 3.2: Exercises in Kara

17

3.2 Examples

The following examples of finite state machines illustrate what can be taught
with Kara. Each example was selected to make a particular point. Simple
“getting-started” tasks are omitted.

Tracking a Wall of Trees:
A One-State Example with Invariant

This example illustrates in a graphical manner how invariants can be used to
ensure the correctness of a program. Consider a wall of trees of arbitrary shape,
with arbitrary appendages, as shown in figure 3.3. The bug must be programmed
to cycle endlessly around the perimeter of the wall, hugging it with its right side.

[track |

R L ‘: d A Kara executes: Next State:
R ~
L AR x e Q
&&g ﬁ x[::s [@ track
IV VYV VY [, @D M
& X [Yes [)’95 @ M

Fig. 3.3: Wall of trees, and program for “follow wall”

For the sake of simplicity, let us assume that program execution starts in
a position satisfying the precondition shown in figure 3.4. At least one of the
trees shown must be present.

-~
-
-~
-

?

.3
?

omd | *=d

~ B
~ 3

-~

m

Fig. 3.4: Predicate “wall to the right (behind)”

The program has only one state track (figure 3.3). It maintains the precon-
dition in each transition, making the precondition an invariant of state track.
If there is no tree to the bug’s right side, it turns right and steps forward. If
there is a tree to its right, it steps ahead or turns left, depending on whether
there is a tree in front of it. The only tricky case is when there is a tree in front.
The bug may not turn left and then step ahead in a single transition, because
it does not know whether there is tree to its left side or not.

The program is simple: it checks all possible configurations of the relevant
sensors and acts accordingly. The finite state machine model is well suited to
specifying the necessary logic of this solution in a concise yet readable man-
ner. Also, the importance of invariants in reasoning about the correctness of
algorithms can be shown in an illustrative setting.

18

Slalom Tours: A Simple Two-States Program

This example shows how two almost identical states complement each other.

This is a principle found in many state machine examples. The bug is to walk a

slalom around the trees in figure 3.5. The basic algorithm is simple: start with

a left ‘turn’ around a tree of 180°, do a right turn of 180°, then do a left turn
. until reaching the right-most tree, where a turn of 360° is necessary.

)

Fig. 3.5: Slalom between trees

The state machine illustrates how states can be used to simulate a Boolean
flag. Between the trees, the program must either do a left turn or a right turn.
The program in figure 3.6 uses the two states left and right to distinguish these

two cases.

start

right turn left turn |
@ m /¥ Kara executes: Next State: e ™ W Hara executes: Mext State:

T @OD v | LI OOD [mem -
T QD [wm | OB [-

Fig. 3.6: The slalom program

Painting Binary Pascal Triangles: Using States as Memory

This example shows how states can be used as the memory in a calculation.
Figure 3.7 shows a leaf pattern which represents the integers modulo 2 of the
Pascal triangle, with its apex at the top left corner of the grid. An even number
is represented as an empty square, an odd number as a square with a leaf on it.
Creating the Pascal triangle pattern is quite challenging for students.

Figure 3.7 also shows the basic algorithm of the Pascal triangle construction.
The ladybug paints the triangle row by row, walking from left to right. Upon
reaching a tree, it walks back to the left, advancing to the next row.

19

BEBEERRBPRERTEBRBE BN
®® B BB R BB BA
wH | R® BR | BB BE A
L # g * #® A
wEERE L g wEER
& #® w# LY
L g LY
® b ® A
BEEECEEE wEER
& W LY
wH | wE LY
L # ® A
R BRBR
® # LY
L LY
L LY
BHEBBBBEBBRBRBEDE LY
& ® g LY
L b LY

L L L
LN E N NN NN NN NN SIS

Example for Example for
state carry1 state carry0

: La L4
H ® O

Fig. 3.7: The Pascal triangle and the calculation of its squares

The values of the squares are determined by the bug using its sensor on leaf
and its current state. The sensor determines whether the bug is on a square
with a leaf or not (square b in figure 3.7). The current state is used to remember
whether there is a leaf on square a. In state carry0, the bug knows that square
a represents an even number, and in state carryl, the bug knows that square a
represents an odd number. The combination of sensor input and current state
determines whether the bug will put a leaf on the square to its right, transiting
to state carryl, or whether it will simply step ahead, transiting to state carryO.
Figure 3.8 shows the program with its three states.

carnll |

‘: n Kara executes: Mext State:

[, [@
L0000 0O
1", @0
T'T"o00@

4

=1l =1l il
HIHIBIE
SAHIHIE
= || =

4 4 || 4

next row caryl
s
‘g M. Kara executes: Next State: e 3 2| vara executes: Next State:

L@ e <] [l OOOODODO [+
'L @@@ v - |'LI°@® -
Mell™ stop - ", 90 0@ ot row
x[YeS [Yes @@@ next row

Ml

Fig. 3.8: Program for binary Pascal Triangles

20

Kara and the Automatic Ant:
Simple State Machine, Complex Behavior

Kara can also be used to study the mysteriously complex behavior of simple
Turing machines. Christopher Langton introduced the so-called automatic ant
to illustrate this behavior (see, for example [Gal98]). An ant works on an infinite
two-dimensional array, and follows a simple algorithm. If it is on a white square,
it changes its color to black and moves to the square to its right. If it is on a
black square, it changes its color to white and moves to the square to its left.
Figure 3.9 shows a Kara program simulating an ant, where white is interpreted
as an empty square, and black as a square with a leaf on it.

(ot |

* Kara executes: Mext State:

[, 9D | =
"D | :

Fig. 3.9: Program for Langton’s Ant

In an initially empty world, after about 10’000 state transitions with no easily
recognizable pattern, the ant starts building a structure called highway by its
discoverer James Propp. Figure 3.10 (left) shows a highway in Kara’s world.
It seems that in an world of unbounded size, an ant always starts building
highways after a while, regardless of the initial configuration of the world. This
conjecture remains unproven. L. A. Bunimovch and S. E. Troubetskoy proved
that the path of an ant in an array of unbounded size is always unlimited, that
is, the path of the ant will leave any bounded area.

Fig. 3.10: Left: World of Langton’s ant. Right: A modified ant’s world.

Slight variations in the ant’s algorithm result in drastic changes of the created
pattern. For example, Horst Miiller has modified the ant program so that
the bug makes two steps ahead after a left turn, instead of one step (private
communication). The resulting pattern is highly regular in contrast to the
pattern of the original ant (figure 3.10, right). The ant example shows how

21

fragile algorithms can be and that small local changes can have drastic global
consequences.

Models of Computation:
Assumptions and Their Implications

Using finite state machines to control the ladybug might seem to impose severe
restrictions regarding the range of tasks the bug can achieve. This leads to
one of the core questions of computer science: what can be computed within
different models of computation? The Kara environment can be applied to the
investigation of this question. The “finite state machine” illustrates different
computing models and shows how important it is to precisely define all the
details. Subtle differences with respect to what the bug can do in its world
change its power of computation. In this theoretical discussion we consider an
idealized version of the bug living in a world of infinite size in which only leaves
may exist.

“Read Only”-World — Finite State Machine Model

In this model, the ladybug is not allowed to modify the world, it may only
move about. Under this assumption, its programs are finite state machines
per definition. In an empty world, an automaton will soon either stop or fall
into a periodic pattern. As a consequence, walks such as the infinite spiral in
figure 3.11 are impossible. To distinguish the different, increasing lengths of the
boundaries of the spiral, a state machine would need an unbounded number of
states.

e el e e e e e i
bl el e e e e

padr vl G

palr i

b
el

EE B e R R L e

cide i e
bl el e e
EREREREERRRRRRER

EZEE B R R e e

E R

Fig. 3.11: Impossible spiral walk in an empty world

If the world is not empty, the bug can solve more interesting problems. In
particular, one can consider pattern matching. Figure 3.12 shows how Kara can
test a given world area for the occurrence of the pattern “empty square, square
with leaf, empty square”.

Pattern matching leads to the theory of regular languages, to the question
which languages can be recognized by a state machine and which cannot. Figure
3.13 (top) shows an element of the regular “leaf language” containing all draw-
ings of the structure “empty square, square with leaf”, repeated an arbitrary
number of times. A simple program with two states can decide whether a given
drawing is an element of this language or not. However, deciding whether a
drawing consists of any number of empty squares followed by the same number
of squares with leaves exceeds the capabilities of a finite state machine (figure

22

®
ERH ®® BB F A

(] o]

AW Karaexecutes: Next State: - 13 Kara executes: Next State: o 8 Karaexecutes: Next State:
“.["D - L@ 0 - LI '
e ke 0 M 0 - PEL @ stop ?
7 @ st - T @ 0 e I o A

Fig. 3.12: Matching a simple pattern (world and program)

3.13, bottom). As in the spiral walk problem, the state machine would need
to distinguish the possible numbers of squares in its state space, which is not
possible in a world of arbitrary, unlimited size with a bounded number of states.

e B A
A o

Fig. 3.13: Top: A pattern recognizable by a state machine (i.e., (01)"). Bottom:
A pattern not recognizable by a state machine (i.e., 0"1™).

“Read-Write”-World — Turing Machine

If the ladybug may lay down and pick up leaves at arbitrary places, it can use
the world as a “read/write” memory of unbounded size. Under this assump-
tion, its programs become the most powerful computing model in the hierarchy
of automata — Turing machines which can compute anything algorithmically
computable (given suitable encoding of input and output). As an example, fig-
ure 3.14 shows how a simple four-state machine (not shown) decides whether a
drawing is an element of the non-regular language {0™1™}. The program pro-
ceeds by using one square as a marker, and moving leaves from right to left. The
drawing is an element of the language if and only if the bug is on the marker at
the end of program execution.

23

L) LSl)
®
AB®E | B BEA

i
ABREE A

Fig. 3.14: Is a drawing an element of the non-regular language {0™1"}?

Exhaustive walks in arbitrary labyrinths:
The Power of State Machines

Kara can also be used to show how difficult it can be to determine whether
a problem can be solved under certain assumptions. When the ladybug is re-
stricted by a wall of trees to an enclosed part of the world, it is not obvious
which problems can be solved and which are unsolvable. The fact that its pro-
grams are Turing machines when working in a world of unbounded size is of no
consequence when it is limited by a wall of trees. As an example, consider the
labyrinth shown in figure 3.15. The bug is to visit each square in this labyrinth
and put a leaf on it.

b3 .
AR AR | ARRR R
" AR R L3
~ RR | R R

" AR
ARRRRRRRR

Fig. 3.15: A labyrinth for an exhaustive walk

A finite state machine can be implemented to tackle this problem using a
backtracking algorithm. The proof of existence and the construction proce-
dure for such an automaton was given by Horst Miiller in his 1977 paper A
One-Symbol Printing Automaton Escaping from Every Labyrinth [Mue77]. Ac-
tually constructing the automaton would require tedious work as it consists of
7968 states. In contrast to the standard definition of finite state machines, the
Kara model allows an arbitrary number of commands for each transition. Horst
Miiller estimates that this would bring down the number of states needed to
somewhere around several hundred states. To show how the algorithm works,
he has implemented it with JavaKara, simulating the state machine in Java.
The program has roughly 1500 lines of code and illustrates the complexity of

24

working with the limited capabilities of the finite state machine model.

The basic idea of Horst Miiller’s algorithm is that if the bug were able
to distinguish four directional arrows on the squares of the world, a standard
backtracking algorithm could be implemented. Arrow squares are simulated in
Kara’s world by considering “macro squares” consisting of four regular squares
(figure 3.16). A clever interpretation of the possible combinations of empty
squares, squares with trees, and squares with leaves within such a macro square
yields an encoding of the four arrows. Parsing a macro square and distinguishing
the arrows is rather tedious, as the bug does not have a “bird’s eye” view of the
world.

RARA

Fig. 3.16: Four squares constitute a macro square

3.3 Conclusions

The theory-based approach of Kara, which emphasizes a simple, yet power-
ful model of programming, yields an educational tool which can be applied
with a broad range of audiences. Our experience, as discussed in Chapter 7,
shows that it can be used for introductory programming in elementary and sec-
ondary schools, and it can be used in courses on the theory of computation
with computer science students. The visual and intuitive nature of Kara illus-
trates otherwise abstract concepts such as proofs of correctness, invariants, or
computational models in graphic examples. There is no need to learn a com-
plex real-world programming language in order to study such fundamentals of
programming.

Chapter 4

TuringKara:
Two-Dimensional
Turing Machines

The concept of Turing machines is an important topic in computer science ed-
ucation. The fact that with respect to the power of computability Turing ma-
chines and PCs are equivalent is an important point to be made. The intention
of TuringKara is to support teaching this topic by providing an educational en-
vironment in which students can experiment with Turing machines in an easily
accessible manner.

4.1 The Rationale for TuringKara’s
Two-Dimensional ‘Sheet’

In the theory of computation, models of computation are of prime interest.
The concept of computational models arose from the question “What can be
computed by an algorithm, and what cannot?”. The various formal models of
computation, such as production systems, Turing machines, recursive functions,
and the lambda calculus capture the intuitive concept of “computation by the
application of precise rules”. The standard universal models of computation
were designed to be conceptually simple. It usually comes as a surprise to novices
that the set of primitives of a universal computing machine can be simple, as long
as these machines possess the two essential ingredients of unbounded memory
and unbounded time.

Turing machines are a universal model of computation which play an im-
portant role in the study of computability. The standard Turing machine works
on a single tape of unbounded length. Turing argued that with regards to
computability, he could restrict the external memory of his model to a simple,
one-dimensional tape [Tur37]:

Computing is normally done by writing certain symbols on paper.

We may suppose this paper is divided into squares like a child’s arith-
metic book. In elementary arithmetic the two-dimensional character

25

26

of the paper is sometimes used. But such a use is always avoidable,
and I think that it will be agreed that the two-dimensional charac-
ter of paper is no essential of computation. I assume then that the
computation is carried out on one-dimensional paper, i.e., on a tape
divided into squares.

The definition of Turing machines is easy to understand, and their execution can
easily be visualized. However, many examples of Turing machines are artificially
selected because they solve problems which have simple solutions. Problems of
interest, such as the addition of two numbers, are quite complex on standard
Turing machines which work on one-dimensional tapes.

For its educational purpose, the TuringKara environment uses Turing ma-
chines which work on a two-dimensional sheet. Even though the sheet is irrel-
evant with regards to computability, it greatly simplifies the solutions of many
problems. Note that in TuringKara, the world is not of unbounded size; it has
a user-defined size. For most problems, this is not a restriction, as one can set
the world size to suit the needs of the problem.

As an example, the task shown in figure 4.1 is to add a column of binary
integers. These numbers are aligned vertically, as one would do on paper. A
four-state Turing machine implements the addition and is quite simple. Solving
the same problem on a one-dimensional tape is significantly more complicated,
as the read/write head of the tape would have to do far more movements.

4.2 The TuringKara Environment

*: Programming TuringKata y =BT =lalx|
[turingkara_multiple_add kara | - [* turingkara_multiple_add.world
BEa B B3 Programming Exercises| =
ﬁ‘ rKara— rKara's World “World:
| -8=b—o | |8 .
o o B i} N 0
. ; © @ #10[10/1]1[1 0] #] 3
o) ‘/ﬁ #/0/0(0|0|1|0/1 #]|
o 8 (# 0/0/1/0/0/01|# #
o #/0/00/0/0/1]1)#| T
B goBack [add1 | camyl | camyd | @ # L #| Ir
T)[0]#][7 Kara executes: Next State: @ =
0 ' 00 [+ | |s =
8O mr00 [~ | |&E
@@ XSToTE 00@ goBack - 'T%"]w 1
i) g
g E Speed of xecution Mwumami
m slow fast ’—tM P =

Fig. 4.1: The TuringKara environment

Figure 4.1 shows the user interface of the TuringKara environment which
was implemented jointly with Markus Brandle. An effort was made to apply
as few changes as necessary to the user interface of the Kara environment. To
users, TuringKara should feel instantly familiar.

27

The read/write head, visualized as a red rectangle, can be moved up, down,
right, and left, and has no sense of direction. The world objects are symbols of
the alphabet 0, 1, #, O (empty square), <, —, T, |. The read/write head can
write any symbol on any square in the world, regardless of its current symbol.
The symbols do not have any inherent semantic for the read/write head and
can be used for any purpose. They were chosen for reasons of convenience, as
the arrows provide a means of placing markers in the world. For example, figure
4.2 shows a labyrinth whose borders are marked by the # symbol. The task is
to visit each square within the labyrinth and mark it with the symbol 0. The
figure shows how the program uses the arrows as markers to remember from
which direction the read/write head entered a square.

EYY Y TR T PTY PR P P P
llelolx

w=(ww/w (11 ==
* IRENFTYET
=[x/ [T 1=
(3%] ##olt
#* (3] #* ot
= === 1%

FYH Y TR Y)Y PV T P P

H
H

Fig. 4.2: Backtracking using arrows as path markers

The program editor is almost identical to the program editor of Kara. There
is only one difference: the programmer can associate a set of symbols with
each transition. For example, in the transition table shown in figure 4.3, the
first transition will be chosen if the read/write head is on any of the following
symbols: 0, #, «—,—,T,]. If it is on an empty square, the second transition will
be chosen; if it is on a 1, an error will occur.

WEST

10/ #
Kara executes: Next State:
[=]=]t][2]

" @@ o -
x @@ WEST -

Fig. 4.3: A state transition table in TuringKara

The definition of TuringKara machines differs from the definition of standard
Turing machines. In a standard Turing machine, a transition specifies exactly
one symbol to be written and one move command of the read/write head to be
executed. In TuringKara machines, any number of write and move commands
can be associated with a transition. TuringKara machines are equivalent to
standard Turing machines, and the conversion is straight-forward. The advan-
tage of the TuringKara model is that it significantly decreases the number of
states needed for most Turing machines.

28

4.3 Examples

The many examples for TuringKara include typical one-dimensional problems
such as deciding whether an input string is part of some language or not, for
example, whether an input string is a palindrome or not. However, problems
exploiting the two-dimensional world are more interesting. The following exam-
ples illustrate the power of the two-dimensional world.

Multiplication of Binary Integers

In elementary school, every pupil learns how to multiply two numbers. This
example shows how one can ‘teach’ multiplication to a Turing machine and the
degree of precision required to do so. We have implemented the ‘Gipsy’ multipli-
cation algorithm instead of the standard algorithm taught in elementary schools
to simplify the resulting Turing machine. This algorithm is particularly easy to
implement with binary representations of numbers: one multiplicand is divided
by two, while the second multiplicand is multiplied by two. Multiplication and
division by two can be done with simple left and right shifts, respectively. If
the first multiplicand is odd, the second is added to the current result. When
the first multiplicand becomes 1, the algorithm terminates.

This multiplication algorithm is relatively easy to implement with an nine-state
TuringKara machine. Figure 4.4 shows how the multiplication of 5 % 4 proceeds
in the world. The two multiplicands are in the first line, separated by #,
and the result is on the second line, initially 0. Dividing and multiplying the
multiplicands in each step takes place on the first row only. When the second
multiplicand must be added to the current result, the two-dimensional world is
used to achieve a simple addition algorithm, with only little movement of the
read/write head.

54 10/1/#/1/0/0
0 0000000
2*8 10#1000
4 0/0/0/0/1/0/0
1*16 1#1/000/0
4/ 0/0/0/0/1/0/0
20| 0/0/1/0/1/0/0

Fig. 4.4: Multiplying 5 % 4 with TuringKara

Two-Dimensional Universal Turing Machine to
Simulate Standard Turing Machine

The concept of a universal Turing machine (UTM) is very important in the the-
ory of computation. It explains the idea of programmable machines by showing
how one machine can be programmed to simulate an arbitrary machine. A
UTM takes as its input another Turing machine, both its program and its tape,
and simulates its execution. Markus Brandle has implemented a universal Tur-
ing machine in TuringKara which has 41 states. It is capable of simulating

29

any Turing machine which satisfies the following constraints: it works on a
one-dimensional tape, and its alphabet only contains the symbols 0, 1, #, O
Even though the TuringKara UTM is complex, its simulation algorithm is quite
straight-forward and fascinating to watch. It exploits the two-dimensional world
to encode the Turing machine to be simulated in a visually intuitive fashion.

In the following, we show how a Turing machine must be encoded in the
world before it can be simulated by the TuringKara UTM. Figure 4.5 shows
how a single transition of the Turing machine to be simulated is encoded within
the world. a, b are elements of its alphabet, i.e., 0, 1, #, O; m is the move of
the read/wrlte head to be made, i.e., m € {«, IIJ (stay), —}.

O3

current next move
state (s1) state (s2) (m)

[o[1]#[1]=[o[1]#[0]#[=]

current symbol to
symbol (a) write (b)

Fig. 4.5: A transition and its encoding for the TuringKara UTM

As an example, we encode a string-inverting Turing machine for simulation
by the UTM. Figure 4.6 shows how a string inverter can be implemented as
a TuringKara machine. The machine has a single state inverter with three
transitions. It replaces 0 by 1 and 1 by 0 until it reaches the # symbol.

inverter ‘

1.0 #
Kara executes: Next State:
=l

x{d @ inverter
x 10 @@ inverter

x #

1.

4

stop

[0]J1/0/1/0/1/0/1]0/#

Fig. 4.6: The inverter Turing machine to be simulated

30

For the TuringKara UTM, each transition of the Turing machine to be sim-
ulated must be encoded in the world, as well as its start state and its tape.
Figure 4.7 shows the encoding of the string-inverter. Its three transitions are
encoded as described above, its start state is specified at the top of the world,
and its initial tape is given at the bottom of the world. Some # symbols and
empty lines are used by the UTM as markers and memory space.

start state |-# 01 #l
transition IO 1 # 1 =} 0 1 # 0 # =’|

transition |0 1 # o =}0 1 # 1 ##l

transition |o 1 ###oo### |

markers to help #

navigation ##############

row to mark current
read/write head position

weramimes [110[1[0[1[0[1]0[1]0[1]0[1[#

Fig. 4.7: The string-inverter encoded for the TuringKara UTM

Non-Computable: Two-dimensional Busy Beavers

This example addresses the core question of what is computable, or decidable,
with a Turing machine. This question is of particular interest in the theory of
computation. The standard example of an undecidable problem is the halting
problem: a Turing machine cannot decide whether another Turing machine will
terminate or not.

In 1962, Tibor Rado invented an instructive non-computable function. The
function ¥(n) is defined as the maximum number of marks a Turing machine
with n states produces on an initially empty tape before termination. Turing
machines with n states which produce ¥(n) marks are called “busy beavers”.
The function ¥(n) is well-defined but non-computable. In The Turing Omnibus,
Dewdney mentions a result by M. W. Green from 1964 which illustrates what
non-computable means in the case of the busy beaver function [Dew89]: ¥(n)
grows faster than any computable function. Formally, the following holds for
any computable function f(n), for infinitely many values of n:

f(Emn) <Z(n+1)

The four-state busy beaver produces 13 marks on the one-dimensional tape.
Heiner Marxen has shown that the five-state busy beaver produces at least
4’098, and the six-state beaver at least 1.29 x 10865 marks [MB90]. Dewdney
explains why busy beavers are so hard to find [Dew89]:

One reason for the enormous difficulty of the busy beaver prob-
lem lies in the ability of relatively small Turing machines to encode

31

profound unproved mathematical conjectures such as Fermat’s last
‘theorem’ or the Goldbach conjecture (every even number is the sum
of two primes). Knowledge of whether such machines halt is tanta-
mount to proving or disproving such a conjecture.

Though Fermat’s last theorem has been proven by now, the busy beaver function
is provably non-computable. TuringKara can be used to simulate known busy
beavers for one-dimensional tapes, at least those which produce only a relatively
small number of marks. It can also be used to investigate busy beavers on its
two-dimensional world. How many marks can a three-state TuringKara machine
produce before terminating? We conducted a small contest, with the following
constraints: only the symbols 1 and O (i.e. blank square) could be used, and
transitions must conform to the standard Turing machine definition. That is,
each transition has exactly one write command followed optionally by a move
command. Figure 4.8 shows the TuringKara machine we assume to be a three-
state TuringKara busy beaver.

— | —
—

0
1
1

— -

ol] &l

10 # 10 # 10#
Kara executes: Next State: Kara executes: Next State: 3 B
[=l=i2][8] ==zl el][g] v executes: Next State:

e - *fiTfee [iiFee [-
hee [Tee [-fMHHee [

Fig. 4.8: TuringKara three-state busy beaver candidate and its world

4.4 Related Work

There are many Turing machine simulations available on the web as Java-
applets. Most of these applets fall into one of two categories. The first category
consists of applets in which users create Turing machines in a textual way, by
entering the transitions manually. This is tedious, error-prone, and not motivat-
ing for students as it forces them to concentrate on using the correct notation
instead of focussing on solving a problem. The second category consists of ap-
plets which offer a graphical representation of a given Turing machine. However,
in many of these applets, users cannot create or modify the machine, but merely
watch its execution. There is no real interaction and students are not involved
in solving problems. There are also some Turing machine environments which
do not fall into either category. For example, in Barwise and Etchemendy’s
Turing’s World, Turing machines are created and edited graphically [BE0O].
However, Turing’s World is commercial Macintosh software, severely restricting
its application in public schools.

32

4.5 Conclusions

TuringKara ‘inherits’ all advantages of the Kara environment: A visual and
intuitive representation of problems and their solutions, and a broad range of
challenging problems. It seems that two-dimensional Turing machines have
not been used as an educational means. Yet the two-dimensional world of
TuringKara greatly simplifies many Turing machines, making it possible for
students to implement solutions of interesting problems with a reasonable effort.
Our experience shows that TuringKara is a motivating approach to introduce
students to the theory of computation.

Chapter 5

MultiKara: Introduction to
Concurrent Programming

Concurrent programming is part of every computer science education at uni-
versity level. It is a complex and mathematically difficult subject of growing
importance. The intention of MultiKara is to support the intuition of students
about concurrency by providing an educational software laboratory in which
they can study concurrency problems and mechanisms to solve them.

5.1 The Challenges of Concurrent Programming

Concurrent programming originally was the realm of specialists building time-
sharing operating systems or real-time device controllers. In the last 30 years,
concurrent programming has become part of the mainstream of programming.
When graphical user interfaces gave rise to event-driven programming, multi-
threaded programming was no longer an option, but became a necessity. Multi-
threading makes it possible to maintain the interactivity of the user interface
while slower processes such as printing go on in the background. Programming
languages were adapted to incorporate concurrency primitives. The importance
of concurrent programming will continue to grow as it provides the basis for
distributed programming. Future systems are going to make increasing use of
distributed services through the Internet.

The challenge in teaching concurrent programming is that it differs in fun-
damental ways from sequential programming. One of the biggest challenges
programmers face is the non-determinism introduced by the unpredictable in-
terleaving of different threads of execution. For programmers, this has two
consequences:

Program Analysis. Many programmers analyze their sequential pro-
grams by mentally simulating its dynamic behavior at run-time. This
is difficult even for sequential programs, as there is a huge number of
possible paths of execution through any non-trivial program. With con-
current programs, a pseudo-dynamic analysis is impractical. Interleaving
leads to an explosion of the number of possible execution paths through

33

34

the different threads. It therefore becomes imperative to analyze the static
properties of concurrent programs.

Testing and Debugging. Testing can reveal the presence of errors in
sequential programs but cannot prove their absence. Due to the non-
determinism of concurrent program execution, testing gives even less in-
formation about errors in a concurrent program. And even if a test reveals
the presence of an error, concurrent programs are notoriously hard to de-
bug because reproducing the error may be almost impossible.

The view that concurrent programming requires a different kind of mind-set
than sequential programming is reflected by Ben-Ari and Kolikant [BAK99).
They argue that concurrent and distributed programming should be taught
at the high school level. They observe that “the challenging nature of the
subject ensures that students must learn how to use critical thinking rather
than hacking” when writing concurrent programs. Students appreciated the
value of correctness proofs as an essential part of concurrent programming.

A further challenge for programmers is the mismatch between theory and
practice. In theory, there are well defined concurrency primitives, such as
semaphores, monitors, condition variables, asynchronous message passing, or
communicating sequential processes. In practice, concurrency mechanisms are
highly language-dependent. In Java, for example, the mutual exclusion mecha-
nism is based on monitors, but only in a rudimentary way. Additional packages
such as those presented by Lea are needed to actually use the models as defined
in theory [Lea99]. In C#, as an other example, shared-memory synchroniza-
tion mechanisms are part of the standard libraries. And there are many other
types of primitives in other languages, for example, the SCOOP model of the
Eiffel language presented by Meyer [Mey97]. Dealing with all these different
primitives is quite challenging for developers.

5.2 MultiKara: Educational Laboratory for
High-Level Concurrency Mechanisms

MultiKara is intended to give students an impression of the problems of con-
current programming and of a number of mechanisms to solve them. Because
concurrent programming at the lower level is a very technical subject, MultiKara
focuses on high-level mechanisms. These mechanisms can be used to coordinate
the four ladybugs in MultiKara. The environment was implemented by Markus
Bréndle [Bra02] and Tobias Schlatter [Sch02].

Of the typical topics in introductions to concurrency — such as nondeter-
minism, process creation and activation, synchronization, process termination,
process scheduling, and interprocess communication — MultiKara addresses is-
sues of nondeterminism, scheduling, and concurrency mechanisms for mutual
exclusion and synchronization.

MultiKara supports four concurrency mechanisms which fall into two cate-
gories: inclusive and exclusive. The inclusive mechanisms are used to temporally
synchronize processes. The exclusive mechanisms achieve mutual exclusion of
processes. The mechanisms of both categories can be applied either within the
state space of the program or within the data structure of the world. The follow-
ing table shows the four mechanisms supported by the MultiKara environment:

35

inclusive exclusive
world space | meeting room monitor
state space barrier critical section

These concurrency mechanisms are what we call anonymous, for the sake of
simplicity. That is, they are independent of the identity of the actors. There is
no way, for example, to have mutual exclusion only between a subset of actors,
or to define a barrier which only a subset must enter to release it. Also, there is
no message passing mechanism in MultiKara because message passing schemes
are not anonymous.

Of the four concurrency mechanisms in MultiKara, monitor, barrier und
critical section are standard mechanisms of concurrent programming found in
textbooks on the subject such as Principles of Concurrent and Distributed Pro-
gramming [BA90]. The monitor guarantees mutual exclusion of the ladybug
actors on user-defined elements of the world data structure. A state marked as
a critical section is protected by binary semaphores so that at most one process
is in a critical section state at run-time. The barrier is a special case of the
rendezvous mechanism in which no data is exchanged; all actors must reach a
barrier state before execution will continue. The term meeting room was coined
to illustrate the underlying synchronization mechanism: The meeting begins
only when all participants are present. The meeting room mechanism was in-
troduced to illustrate the concept of barrier within the world of the actors.

It is interesting to note that there is an effort to apply aspect-oriented pro-
gramming to separate concurrency-related code from the code it is working on.
The idea is that a programmer need not worry about concurrency. In the case
that some code must be used in concurrent settings, aspects would be used
to add the necessary code. However, it is unclear whether this approach will
be successful, and whether such a clear separation of concerns is possible with
regards to concurrency.

5.3 The MultiKara Environment

Figure 5.1 shows the user interface of the MultiKara environment. An effort
was made to apply as few changes as necessary to Kara’s user interface. To
users, the new environment should feel instantly familiar even though its user
interface is more complex.

The program editor provides a separate state machine editor for each lady-
bug. At run-time, the state machines are executed independently, their threads
of execution managed by the scheduler. The only way the programs can inter-
act is by using the world and the objects within or via the built-in concurrency
mechanisms.

Explicit Time Model and Scheduling

The programs of the individual actors are executed by interleaving their threads
of execution rather than by simulating parallel execution. Time is divided into
discrete intervals. During a single interval, one state transition is executed
completely: first, all used sensors are tested and the appropriate transition is
selected, and second, all its commands are executed. The fact that a transition

36

#: Programming MultiKara 3 MultiKara, four ladybugs

[untitled] [* multikara_traffic.world |
[l = (=] Programming [1 a B O Exercises E
5 1 Prioritie:
LAL AR 3 A
8o [;
@
® CEEKEKR
® M N ®
move | 9 17] N m
@ aFHa Kara executes: Next State: e [¥] E
@ " FIrQ —— "k b BAERASN { {, o
QLI"EQd [~ i L |2
@ . -190 = Maz33333
-
® "L LI ston '
[+
[}
ion of program —
il ol T

Fig. 5.1: The MultiKara environment

is atomic makes collision avoidance easy. Without atomic transitions, even
a simple step-ahead command would be a problem. The situation shown in
figure 5.2 illustrates this. Imagine one ladybug testing if the square in front is
empty right before being interrupted. While it is asleep, the other ladybug steps
forward and occupies the square. On its next turn, the first bug steps forward

and collides with the other one.
W :?é:'{'
Fig. 5.2: Two ladybugs which do not see each other

In the MultiKara “Scheduler / Priorities” panel, users assign priorities to
the processes of the bugs, with a total of 16 time intervals (figure 5.3). If users
do not want the program of a ladybug to be executed, they can dragddrop it
onto the parking lot in the scheduler panel.

cheduler / Priorities

| & & & e

& 5 f ! 1 5 & -

Fig. 5.3: Scheduler / Priorities adjustment panel

37

When users start program execution, the scheduler creates a new process for
each active ladybug. These processes are initially put into execution state ready
to run. Figure 5.4 shows the life cycle diagram of processes in MultiKara.

ready to run

terminated

Fig. 5.4: Process life cycle

The scheduler determines which process will be the next to execute a state
transition by choosing one of the processes in execution state ready to run. The
probability of a process being selected is given by its relative priority among all
ready to run processes. The process chosen by the scheduler is put into execution
state running. After having executed its transition, the process is put either into
execution state ready to run again, or into state terminated if its current state
is the stop state. Program execution stops when all processes have reached
the execution state terminated. Note that the scheduler can also schedule the
processes in a round-robin manner, depending on the users’ settings.

The execution of a transition can create a conflict. The example in figure
5.5 illustrates this. We assume that the current transition of the violet ladybug
consists of making two steps ahead. However, it cannot enter the monitor
squares in front of it because it is occupied by the bug on the right. Due to this
conflict, the transition will not be executed.

70 S ~7 R
72> T 72> T 722> 7%

Fig. 5.5: Violet ladybug cannot enter the yellow square

The scheduler first determines whether the execution of a transition creates
a conflict or not. Transitions are atomic, so they are not actually executed
if they create conflicts. However, to show users the conflict graphically, the
transition is executed up to the command which creates the conflict. After this
partial execution, a roll-back is done: (1) The effects of those commands of
the transition which were already executed are undone, (2) the current state
remains unchanged, (3) the process is put into execution state sleeping.

38

Users can also control the scheduler manually which can be helpful when
testing and debugging programs. Figure 5.6 shows the program execution panel
extended with four colored buttons. These buttons permit users to choose the
ladybug process whose interpreter is to execute a transition.

=ecution of program

|
M > N m

Fig. 5.6: Program execution panel with manual scheduling buttons

World Objects

In MultiKara’s world, there are bugs, leaves, trees, mushrooms, and direction
signs. Each ladybug lays leaves in its own color. A sensor tests whether a leaf is
its own or not. A bug cannot test a leaf for a specific color, as programs would
have to be adapted for each bug individually. When bugs cooperatively solve
a problem, the colored leaves give a visual impression of how much ‘work’ was
done by each bug.

Direction signs can be put on any square to indicate from which directions
a square may be entered. Squares without direction signs can be entered from
anywhere. The idea is to provide a simple way for the bugs to follow user
specified directional paths through the world.

Sensors

There are 8 types of world objects which can be detected by the sensors of the
bugs: bugs, leaves, trees, mushrooms, and four kinds of directional signs. The
bugs see the contents of four squares, the square they are on, the squares in
front, to the left and to the right. Predefining all possible sensors would result
in a huge sensor library. Therefore, only a few sensors are predefined. All other
sensors have to be created by users using the sensor toolbox shown in figure 5.7.

5.4 Concurrency Mechanisms in MultiKara

In the following, we present the four concurrency mechanisms with examples to
illustrate their application.

World: Meeting room

There is one global meeting room in the MultiKara environment which consists
of all meeting room squares. This means that the bugs enter the meeting room
whenever they enter any of the meeting room squares in the world. Note that
the bugs cannot detect these squares. The global meeting ‘room’ can therefore
consist of unconnected pieces of meeting room squares. The reason is that
having more than one meeting room would complicate its semantics: which bug

39

CTR- o oo X
World sensor |
Name of state: Malk ‘
rUsed sensors———————— rSensor library—————— Sensor name: [streetin front? |
?‘ tree infront? ?‘ tree infront?
"? Kara in front? A+ | lreetothe len? [Sensor vWorld

.\ tree to the right? |1|

£ leaf on the ground?

* mushroom in front? "»i '& ?

? kara in front? _ E IE IE B
W | Comsemer | 1
v X v X

Fig. 5.7: State editor showing used sensors and sensor library (left) and sensor
editor to create new sensors (right)

has to enter which room to complete a meeting? In order to keep the meeting
room anonymous, that is, independent of the actors’ identities, there is only one
global meeting room.

The meeting room has two states, in and out. When the meeting room is in
state in (represented by green colored world squares), actors entering the room
are put to sleep. When all active actors have entered the room, the meeting
room changes to state out (red colored world squares) and the scheduler wakes
the sleeping processes. Only when all ladybugs have left the room, it will change
to state in again. Note that if an actor attempts to re-enter the meeting room
before all others have left it, it will be put to sleep until the room changes to
state in.

As an example, figure 5.8 shows two bus lines with adjacent stations. The
ladybugs simulating the buses are to wait on each other at the bus station so
passengers can transfer from one bus to the other. The problem can be solved
by marking the bus station squares as meeting room squares. The finite state
machine makes the bugs track the streets, with no concern for the temporal
synchronization with the other bug. In the case of randomized scheduling, it is
not obvious how this problem could be solved without meeting rooms.

TILLFFE] [Ad4LFFE
PR fefel | [PRI L] [T
2—‘ L)l 6 | e 72—‘ L 4] HH
EMER EEMEEME: N
g | L[] N
FEFFTYAA"] FERFI4AA

Fig. 5.8: Meeting Room in states in and in out, colored green and red

40

World: Monitor

There is one global monitor in the MultiKara environment which consists of all
monitor squares. This means that the bugs enter the monitor whenever they
enter any of the monitor room squares in the world. Note that the bugs cannot
detect these squares. At most one bug may be in the monitor at any given time.
The monitor has two states, free and busy. It is in state free (represented by
green colored world squares) when no actor is in the monitor. When an actor
enters the monitor, it changes to state busy (red colored world squares). If an
actor attempts to enter a monitor world square while the monitor is busy, its
process is put to sleep. When the actor currently in the monitor leaves it, the
monitor changes back to state free, and all processes waiting on the monitor are
woken up.

In the problem shown in figure 5.9, the bugs are to track their parts of
the street. The monitor makes it possible to easily avoid collisions in the bi-
directional parts of the streets. The critical parts are marked as monitors,
and the state machine simply makes the bugs track the street. In the case
of randomized scheduling, it is not obvious how this problem could be solved
without the monitor mechanisms.

> P bR BOb b |

e b b Bob b |
47

e b

KKK M

P PPP
N
RUERY
4444°

HRERERER

HRERERER

N

74
| 4 44 494 4 | 4 48 4996 4

Fig. 5.9: Monitor traffic example (free and busy mode)

Note that it would be more efficient if there were more than one monitor
in MultiKara. Each area of monitor squares could define one monitor, so that
multiple monitors could be busy at the same time. In the above example, the
two monitor areas are independent of each other and it would therefore be more
efficient if they defined two monitors. However, we wanted all four concurrency
mechanisms of MultiKara to be consistent. The monitor is the only mechanisms
where multiple instances could be used anonymously; this is not possible with
the meeting room, the barrier, or the critical section. Therefore, there is only
one monitor even if the run-time of the programs increases somewhat.

Program: Barrier States

Barrier states synchronize the program execution of all active actors. They cor-
respond to the meeting room squares in the world. There is one global barrier
which is used by all barrier states. This means that the processes enter the bar-
rier whenever they enter any of the barrier states. In the graphical editor, they
are represented by thick dashed borders (figure 5.10). The barrier is activated
when a barrier state becomes the current state of a state machine at run-time.
The border of the barrier state is painted red, and the corresponding process is
put to sleep. It will only be woken up when all processes have reached a barrier

41

state. At that moment, the barrier is deactivated, and all barrier states are
again painted green.

LY d R
L3 e L}

Q tocenter
-

? Kara executes: Next State:
’ ‘.
x
R — e L @ oo —
“ res
- —, x [Stop -

Fig. 5.10: Simple example for synchronized walks

As an example, the program in figure 5.10 makes two bugs find the center
square between two trees. The two bugs walk from the trees towards each other,
waiting for each other after each step. The waiting is achieved by a barrier state.
This ensures that a ladybug with higher priority does not walk further than the
other with lower priority.

Program: Critical Section States

Critical section states permit mutual exclusion within parts of a finite state
machine. They correspond to the monitor squares in the world. There is one
critical section which consists of all critical section states. This means that the
processes enter the critical section whenever they enter any of the critical section
states. At most one process can acquire the critical section. In the graphical
editor, critical section states are represented by thick borders.

A process acquires the critical section when a critical section state becomes
the current state of its state machine at run-time. When this happens, the
critical section states of all other programs are painted red. When a state
machine attempts to enter a busy critical section state, its process will be put
to sleep until the critical section is released. This is the case when the state
machine which currently owns the critical section enters a non-critical section
state.

As an example, consider the game-like variant of the consumer/producer
problem shown in figure 5.11. The yellow ladybug is the producer, endlessly
trying to place lines of a random number of leaves in the world. The only
constraint is that lines of leaves may not be adjacent to each other. The other
bugs are the consumers and replace the yellow leaves with their own leaves.
A bug must always consume a whole line of leaves at a time. The programs
must avoid situations where two bugs start replacing leaves of the same line.
Also, they should not start replacing before the producer is done with a line.
Therefore, both the production and the consumption are critical sections of the
programs.

Figure 5.12 shows the state machines for both the producer and consumer
bugs. The producer walks about randomly, at times checking whether there is
enough empty space to start a line of leaves that respects the space constraints.
The consumers use critical section states to ensure that at most one of them is
on a leaf. They only enter a square with a leaf on it when they make a transition

42

® ®
BRBBDBEBRD %%% wHE ®

®

®

. #

> #

*

BEBRER

@ #

® wEH @
*

Ll ® FEEERREEE
L Ll d

® | ® BE®
® BREE® B ®
®

&

BEBR

BRER
&
®

LFEEREEEE

BEBR
HRRE

T«
®

Fig. 5.11: Yellow bug produces lines of leaves which the others consume by
replacing them with their own leaves

start

start o- put leaves

Fig. 5.12: Producer program (left) and consumer program (right)

into a critical section state. When they have replaced the leaves, they exit the
leaf square and release the critical section.

5.5 Examples

Programming several bugs is quite challenging. Users must deal not only with
collision avoidance, but also with synchronization. The inclusive concurrency
mechanisms help solving problems which require solutions consisting of multiple
phases. They enable the programmer to guarantee that all processes are in the
same phase. The exclusive mechanisms make mutual exclusion possible, for
example collision avoidance between the actors even when they are not facing
each other.

Many problems which can be solved with a concurrency mechanism in the
world (meeting room or monitor) can also be solved with the corresponding
mechanism in the state space (barrier or critical section). In the case of the
state space mechanisms, it may be necessary to use additional world objects to
mark a square. The marked square serves as a sentinel, notifying the bugs that
they should enter a barrier or critical section state. The programs using the

43

state mechanisms are more complex and less intuitive, since the concurrency
logic is mixed with the actual algorithm.

Putting Down Leaves Between Two Trees:
Multithreading without Concurrency Primitives

As a first example, we consider a problem whose solution does not require the
use of a concurrency mechanism. The example illustrates how the bugs can
cooperate using only their proximity sensors to avoid collision. It also shows
the increase in size and complexity of programs for multiple actors in comparison
to programs for one actor. The task in this example is to put a leaf on every
square between two trees.

Figure 5.13 shows the initial world for a single ladybug. It has an arbitrary
position between the trees and faces one of the trees. The corresponding pro-
gram is straight-forward: The bug moves up to a tree, turns around and then
puts down leaves while walking to the other tree.

n L4 .

Fig. 5.13: The ladybug must put a leaf on every square between the trees

With an arbitrary number of bugs, the solution is more complex. One wants
to impose as few restrictions on the initial conditions as possible. We therefore
assume that the bugs will be placed arbitrarily between the trees facing a tree.
All bugs should have the same program which should work regardless of the
number of bugs participating, their starting positions and their priorities. A
solution is shown in figure 5.14.

. ° -

second ‘

first #y,
* ¥

Kara executes: Next State:
ez yes
X x [[or @ second -
no

x [yes @@ first M (FS 7=
L@@ |wm -
x [m e@@ second ~l % [m [m won -

Kara executes: Hezxt State:

Fig. 5.14: A program for multiple ladybugs solving the problem in figure 5.13

Even though the program is only slightly more complex than its single bug
counterpart, the argumentation for the correctness of the program is signifi-
cantly more complex. There are more possible situations which can occur during
execution, because leaves must be distinguished and collisions must be avoided.

In state first, the ladybug moves forward, putting down leaves, until the
square in front is not empty. There are three possible reasons for the square
ahead not to be empty: (1) There is a tree on the square, meaning the bug has

44

reached an end; (2) there is another bug on the square which will take care of
the squares beyond; (3) there is a leaf on the square, which means that another
bug will take care of the squares beyond. In all three cases, the bug turns
around and changes to state second. In this state, the bug first walks over its
own leaves, using the sensor which distinguishes its own leaves from leaves of
the others. Then it continues walking and putting down leaves as long as the
square in front is empty, stopping otherwise.

Filling a Rectangle: Cooperation Using Barrier States

This example illustrates how multiple actors can cooperatively solve a problem
by using barrier states to synchronize their actions. One, two, three, or four
ladybugs should fill a rectangle bounded by trees (figure 5.15). No assumptions
are made on the number of participating bugs, on their initial positions within
the rectangle, or on the direction they are facing.

PR R RSB JRJRIRSR IR
R & A APPEPEPRRIRNEA
L, R ABEEDIBIDDWER
" N pod

A&kl R
A B A ABEEEEETEEEER
BRI BRI R

Fig. 5.15: Initially empty rectangle and filled rectangle

One solution to this problem is to have the bugs fill the rectangle in a spiral
fashion. Figure 5.16 shows the state machine overview of this solution.

Fig. 5.16: Finite state machine of solution

The program is divided into two phases. In the first phase, each actor is
to find a free corner of the rectangle (state search corner). The main difficulty
is not to collide and to keep going when a corner is occupied by another actor
(states walk around 1 and walk around 2). When an actor has found an empty
corner, it uses the barrier to wait for the others to find their corners (barrier
state in corner).

In the second phase, each actor draws an edge of the rectangle (state walk).
After that, it turns right and uses the barrier (in state in corner) to wait for

45

the others. The second phase is repeated until the rectangle is filled. An actor
stops when there is a leaf or another bug in front of it after waking up from the
barrier. Note that it is therefore possible that an actor with high priority cuts
off another actor with lower priority (figure 5.17).

Ty
B
e
o
i
P
o
o
R

Fig. 5.17: The red actor cuts off the blue actor

This example illustrates the power of having a suitable concurrency primi-
tive, i.e., the barrier. Horst Miiller has solved this problem for the special case
of two actors without using MultiKara’s concurrency primitives [Mue02]. In
contrast to the five-state machine using the barrier, his solution has more than
80 states, as his program implements a way for the two actors to synchronize
using only the leaves in the world.

Stocking up Mushrooms:
Implementing a ‘Handshake’ Protocol with Barrier States

Handshaking is a common procedure to coordinate two concurrent processes.
First, one process does something while the other waits, then the other does
something while the first process waits, and after that, both continue individu-
ally. As a MultiKara example, two ladybugs want to stock up mushrooms in a
storage room. The yellow bug fetches the mushrooms and hands them over to
the violet bug, which pushes them to their place in the storage room. Figure
5.18 shows the world before and after program execution.

el e e M N N N N el e e Ve N N N N N

n L » »
Ry ¢ @ @ A ” ~n
R RRRRRRRR R RRRRRRRR
AR R R RAER ”
~ rcd R R E # TR

e e b Ve W N N Y N Y S Y Y N Y Y N Y Y Y Y

Fig. 5.18: Stocking up mushrooms

The main problem is to have the ladybugs wait for each other in the right
spot when they hand over mushrooms. Two phases are needed to hand over the
mushrooms, both synchronized via the barrier (figure 5.19). In the first phase,
the yellow bug must wait until the violet bug is ready in the niche on the left.
In the second phase, the violet bug must wait until the yellow bug has pushed

46

the mushroom downwards in front of it. Only then may the violet bug start
pushing the mushroom to the right.

LNV YN N YV Y R

L o » e
» ® ¢ A » ¢ ¢ A
IS I NV VNV VNV R R
ARP R R RARER ”
” # & R R # ”

N e N e N e Nt Y N e N e Y 8 Y Y

Fig. 5.19: The yellow ladybug waiting for the violet ladybug (left), and the
violet ladybug waiting on the yellow ladybug (right)

Figure 5.20 shows the state machines of both actors. The programs are
quite complex. The two phases for handing over mushrooms are implemented
in the barrier states. Both programs enforce waiting in the first phase in state
in_niche. Waiting in the second phase is accomplished by the states back and
state wait_for_mushroom, respectively. Note that when the yellow bug does not
find any more mushrooms to hand over, it uses the barrier in state put leaf,
while the violet bug waits in in_niche. After waking up, the yellow bug puts
a leaf on the square in front of it and terminates. The violet bug wakes up
from the barrier in state wait_for_mushroom, notices the leaf in front of it, and
terminates.

1
1
\s _w'lﬂ "s‘\-. _w’
e : o }_-
A Y
x..vl

Fig. 5.20: Finite state machines for the mushroom problem

Deadlock and Starvation

Concurrent programming introduces dangers to the correctness of programs
which do not exist in sequential programs, such as race conditions, deadlock,
livelock, or starvation. Programmers must be aware of these dangers, their
causes, and possible precautions. MultiKara illustrates some of these important
concurrency-related problems.

In MultiKara, two kinds of deadlock are possible. The first kind may arise
when the programmer uses more than one concurrency primitive in the same

47

program. A simple example illustrates this problem (figure 5.21). Both actors
start in the meeting room which is therefore in state out. The yellow actor then
leaves the meeting room, enters the monitor, makes one more step ahead, and
tries to take another step forward. Now the two actors are deadlocked. The
violet bug cannot leave the meeting room because the monitor is busy. The
yellow bug cannot leave the monitor because the meeting room is still in state
out. Both actors sleep, waiting for the other to release its mechanism. When
the scheduler notices that all processes are sleeping, it aborts execution.

‘ F "
P ¢:¢: ¢:¢: / @é&:
T 4 T i l o E 2

W WAL
M) / l# L
Fig. 5.21: A deadlock situation caused by multiple concurrency mechanisms

The second kind of deadlock arises in situations in which the actors block
each other, but which cannot be detected by the scheduler. Such a situation
can arise when the programmer is not careful enough in using the concurrency
mechanisms. For example, in figure 5.22, the actor owning the monitor cannot
leave it, because the exits of the tunnel are blocked. The others are sleeping,
waiting on the monitor. The actor in the monitor will loop endlessly trying to
find a way out of the tunnel. One way to avoid deadlock in this example would
be to extend the monitor by one square on both sides of the tunnel. The bug
in the tunnel could then escape and release the monitor.

AR
W
Faia by

Fig. 5.22: A deadlock situation caused by careless use of the monitor

There are two kinds of starvation situations which can occur in MultiKara.
The first kind can be induced by randomized scheduling. Figure 5.23 shows
an artificial example. The bugs cycle endlessly in a world of two rows, where
the upper row consists of monitor squares. From left to right, the figure shows
what can happen when the yellow bug enters the monitor first. If the other
bugs are selected by the scheduler while the yellow bug holds the monitor, their
processes are put to sleep. After the yellow bug has released the monitor, the
scheduler wakes all processes sleeping on it. Starvation of a bug’s process may
occur if it is never selected by the scheduler after it wakes up, that is, if it is
only selected when the monitor is already busy. The scheduler cannot detect
this kind of starvation. However, the probability that such a scheduler-induced
starvation occurs is small.

The other kind of starvation is induced by a bug. In figure 5.24, the yellow
and red bug wait in the meeting room for the violet bug. However, if the violet
bug only turns around on its current square and never enters the meeting room,
then the two sleeping bugs will wait forever.

48

& B & B & & B

Fig. 5.23: Example of scheduler-induced starvation

¥ A &
L g i i

¥ ¥

¥ ¥ ¥

Fig. 5.24: A starvation situation induced by the violet bug

5.6 Related Work

Though concurrent programming has moved into the mainstream, there is much
less educational literature on concurrent than on sequential programming. Even
in the most recent draft of the ACM Curriculum 2001, concurrent programming
figures only as a small part of the operating systems course [AI02]. In many
books which present an overview of computer science, it is more or less absent.

With regard to teaching sequential programming, mini-languages and mini-
environments have a long tradition and represent a pedagogically sound ap-
proach. For concurrent programming, there are many different approaches, with
no clear favorite. In the following, we present a number of different approaches
to teaching concurrency, with no claim for completeness.

MultiLogo is a concurrent extension of Logo which lets the user control mul-
tiple turtles [Res90]. Its concurrency model is based on the concept of command
queues. Each process has its queue of commands to be executed. Processes can
send each other messages containing commands. These messages have two pri-
ority levels. The higher priority level means a sender process demands that his
message command be inserted at the top of the queue of the receiver process.
The lower priority level means it asks that the command be inserted at the end
of the queue. There are two disadvantages of this approach. First, the command
sending mechanism is quite complex. Second, and more important, the mecha-
nism is quite different from most standard mechanisms of concurrency such as
semaphores or monitors. The fact that a sender of a message can modify the
command queue of the receiver makes reasoning about the invariants and about
the correctness of MultiLogo programs impossible.

Pascal-FC (functionally concurrent) by Burns and Davies is a Pascal vari-
ant designed to teach concurrency [BD88]. The language is based on Ben-
Ari’s extension of Pascal which introduces the cobegin ... coend construct and
the semaphore variable type. Pascal-FC programs are compiled and then in-
terpreted; the compiler and interpreter themselves are written in Pascal and
therefore available on many platforms. The language supports a wide range of
concurrency primitives such as semaphores, monitors, and synchronous message

49

passing. Pascal-FC offers a good introduction to concurrency for students who
already know Pascal. However, the interpreter does not offer any visualization,
making it hard to observe program execution at run-time.

The Ben-Ari concurrency interpreter (BACI) by Bynum and Camp is based
on a language similar to Pascal-FC [BC96]. However, they stress that the idea
is not to show how to use the different concurrency primitives, but rather how
to implement them. Classic textbooks on concurrency, for example Ben-Ari’s
Principles of Concurrent and Distributed Programming, show how one primitive
can be implemented in terms of the other [BA90]. Yet most programming envi-
ronments do not let students experiment at this low level of implementation of
primitives. The BACI addresses this situation and offers a way of experimenting
at the implementation level.

Hartley shows how this approach can be realized in Java [Har98]. Java has
only two built-in concurrency mechanisms. He shows how these primitives can
be used to implement other primitives in Java. As with the BACI, this approach
to teaching concurrency focusses on the technical aspects of implementing con-
currency mechanisms and therefore requires a thorough understanding of those
mechanisms as a prerequisite.

5.7 Conclusions

MultiKara provides an educational environment in which students can under-
stand a number of basic principles of concurrent programming without having to
deal with the complexity of real-world languages and environments. The finite
state machines combined with the simple world of MultiKara form a good vehi-
cle to illustrate concurrency mechanisms. They are visually intuitive and easy
to understand, and they can be used to discuss concurrency related problems
such as coordination, exclusion, deadlock, and starvation.

50

Chapter 6

JavaKara:
A Smooth Transition
From Kara to Java

An introduction to programming as part of general education based on the
Kara environment teaches students about the fundamental ideas of program-
ming. However, programming based on finite state machines does not convey
an impression of what real-world programming in a modern programming lan-
guage is like. The problem is that using a full-blown programming language
in the classroom can become very time consuming even for small problems. In
particular, if the problems involve graphics or user interfaces, their solutions
are typically too complex for beginners. JavaKara addresses this problem by
providing an easy-to-use mini-environment for introductory Java programming.

6.1 Educational Goals and Scope of JavaKara

The JavaKara environment (figure 6.1) offers a smooth transition from the finite
state machines of Kara to the real-world language Java. The world of JavaKara
is the same as that of Kara, but the finite state editor is replaced by a text
editor. Students are already familiar with the world and the actor, so they
can concentrate on learning the Java language and the handling of the Java
compiler. The main benefit of JavaKara is that the ‘output’ of the programs is
visual so students immediately see what their programs are doing.

The goal of JavaKara is to introduce students to the basics of the procedural
programming model:

Decomposition into Methods. Students learn that decomposing a pro-
gram into smaller sub-programs makes their programs more readable and
helps avoid code duplication. Students must also learn the concept of
scope of variables, parameter passing, and return values.

Order of Execution. Beginners must learn early on that the order of
methods in the source code implies nothing about the order of execution
at run-time.

51

52

LI . Kara, the programmable ladybug] =0l
[untitied] [follow wall.world |
EabdBO® . . =@
Programming B* = @ —
/7 if compiling with JDK 1.4, you must remove the following lime: | rHara—— HKara's World rWaorld
fAmport JavaKaraProgram: %
- o »
o PV
* kare.move() Kara. turnRight () Kara. turnLeft () @ &
. imn, S A ORA
SENSORS:
a kara. treeFront () kara. treclefi () kara. treeRight () @ &* & ?
* kare.mushroonFront() kara.onleaf()
i AR | & &
mublic class FindTree extends JavaKaraProgram { @
" L AR R
AL you can dsfine your methods here:!
o | @ LY N L
public veid myProgrami) { .
/7 put your main program here, for example: i = & 4&.
while (!'kara.treeFront()] { ace
P = L N NN
; J 1=
i
ad -ZOOY
N | v]
L Fe=1N
Compile program 7
peed of rExecution of program-)
slow Tast

Fig. 6.1: The JavaKara environment

Branches and Loops. These two fundamental concepts appear in al-
most all JavaKara exercises illustrating if-branches and the different types
of loops (for, while-do, do-while).

Boolean Logic. JavaKara yields many examples of Boolean expressions,
for example, when the programmer needs to combine two or more pieces
of information from the different sensors.

Basic Data Types, Arrays. Many JavaKara programs use basic data
types like integers, booleans, strings, and one- or two-dimensional arrays.

This is about the scope which can reasonably be covered with JavaKara. Stu-
dents learn a small subset of the Java language without having to deal with the
classes of the Java class libraries.

JavaKara does not address the concepts of object-orientation for two rea-
sons. First, we believe that beginners must master the underlying concepts of
imperative programming as outlined above before studying object-orientation.
Second, object oriented programming deals with programming “in the large”,
that is, with structuring a system into a collection of classes. We believe that
these concepts are outside the scope of a mini-environment.

However, note that JavaKara does not place any restriction on what users
can program. They have the complete Java language and all libraries at their
disposal. However, it is not the goal of JavaKara to serve as a vehicle for object
oriented programming. JavaKara is object-based in that programmers have
access to objects. But usually, they use them without thinking about what it
means that they are instances of some class. The underlying mechanisms are
too complex for beginners who want to get started with Java.

Last but not least, note that Java was used as the language of choice sim-
ply out of practical considerations. All Kara environments are programmed in
Java. It is therefore easy to integrate a user-written JavaKara program into the
environment at run-time.

93

6.2 The JavaKara Environment

The world of JavaKara is identical to that of Kara. What has changed is the
program editor. Whereas in Kara a graphical editor lets the user construct finite
state machines, in JavaKara a text editor lets the user write Java code.

A code template in the program text editor helps users write their first
programs. It is basically a black box with spots for users to “plug in” their code.
The listing in figure 6.2 shows the template which defines a class FindTree.

import JavaKaraProgram;

/k
* COMMANDS:
* kara.move () kara.turnRight () kara.turnLeft ()
* kara.putLeaf () kara.removelLeaf ()
* SENSORS:
* kara.treeFront () kara.treelLeft () kara.treeRight ()
* kara.mushroomFront () kara.onLeaf ()
*/

public class extends JavaKaraProgram {

// you can define your methods here

public void myProgram() {
// put your main program here, for example:
while (!kara.treeFront()) {
kara.move () ;
}
}
}

Fig. 6.2: The code template of JavaKara

The class of any program controlling the bug must inherit from the class
JavaKaraProgram. This class is a small interface to the rest of the environment,
so that users only sees what they need to see. The user’s class inherits access
to three different objects: kara, the interface to control the ladybug; world, to
manipulate the world directly; and tools, which contains useful methods such as
window-based string input and output. The most important object to the user
is the kara object. Its command and query methods are listed in the comment
at the top of the template.

Users must write a method called myProgram, which is the entry point from
the JavaKara environment into their program. As an example, the myProgram
method of the above template implements the “find tree” algorithm (see figure
6.2).

Users can define their own methods and instance variables within their
classes. There is only one technical restriction which novice users will prob-
ably not encounter. If the class defines a constructor, it must be parameterless.
The reason is that the system instantiates an object of the user’s class, and it
cannot know what values it should pass to the constructor.

Before users can execute a program, they must compile it. If there are any
errors during compilation, the error messages are displayed below the program
text editor. When users click on an error message, the corresponding line of
code is highlighted in the editor window (figure 6.3).

o4

kara.setPosition(0,0);
while (lkara.treeFront{)) {

kara.move()
T T T T T T L e e e T TRy

Compile program

C:vDocuments and SettingsiraimondyFindeBaum. jawva:l?: ';' expected
int a = 0
F

C:vDocuments and SettingsiraimondyFindeBaum, jawva:20: ';' expected

kara.movel)
~

Fig. 6.3: Compiler error messages

6.3 Examples

Students can learn the basics of Java by working through a series of exercises
of increasing difficulty. The code template of the program editor represents a
“hello world” equivalent of JavaKara and makes the bug walk up to a tree. This
example helps students get acquainted with the environment, in particular with
the Java compiler. It serves as a starting point and can be enhanced to lay
leaves or walk up to either a tree or a mushroom. In the following, we present
three categories of JavaKara examples of increasing difficulty.

Controlling the Ladybug

The first category consists of exercises in which the programmer must control
the actions of the bug. All the finite state machine problems of the basic Kara
environment belong to this category. In JavaKara, these examples introduce
students to the concepts of methods, control structures, and Boolean logic. For
example, the following listing shows a JavaKara program which makes the bug
track a wall of trees.

public class FollowTrees extends JavaKaraProgram {

public void myProgram() {
while (true) {
if (kara.treeFront() && kara.treeRight()) {
kara.turnLeft();
}
else if (lkara.treeFront()) {
if (kara.treeRight()) {
kara.move();
}
else {
kara.turnRight () ;
kara.move();

There are multiple ways to express the if-then-else structure of this program.
For beginners, it might be interesting to compare different JavaKara programs

95

for the same problem. It might also be interesting to compare these programs
with the corresponding Kara state machine.

A more advanced example is given in the listing in figure 6.4. The program
uses variables to let the bug draw a spiral of a given size. An example of this
type can be used to introduce integer variables and methods. The figure also
shows the resulting spiral image.

public class Spiral extends JavaKaraProgram {

void walk (int distance) {
for (int i = 0; i < distance; i++) {
kara.putLeaf () ;
kara.move();

) } EETERERIRRERNEE
B AERREEAREEE W B
.] 55 semsesy 3 5
pub}lc V?ld myProgram() { £ 2 v
flnal int MAX_LENGTH = 20; £ e
int d = 1; g gap%%#%%m g g 3
I ———
while (d < MAX_LENGTH) { R ———
walk (d); &
kara.turnRight();
d ++;
}
¥
}

Fig. 6.4: Drawing a leaf spiral

Programming the World Array

Another category of exercises makes use of direct access to the world. The world
is basically a two-dimensional array on which commands like world.setLeaf (int
X, int y, boolean putLeaf) and queries such as world.isLeafAt (int x, int y) can be
executed.

The examples of this category go significantly beyond the scope of problems
of the basic Kara environment with its finite state machines. They introduce
students to the concept of one- and two-dimensional arrays as a simple, com-
pound data structure. For example, the following listing shows part of a program
which draws a “black-and-white” Mandelbrot set image. Figure 6.5 shows the
resulting image.

public void myProgram() {
WIDTH = world.getSizeX();
HEIGHT= world.getSizeY();
world.clearAll();

for (int row = 0; row < HEIGHT; row++) {
for (int col = 0; col < WIDTH; col++) {
double x = calcMandelX(col); // method not shown
double y = calcMandelY(row); // method not shown
int i = test(x, y);
if (i == ITERATIONS) {
world.setLeaf (col, row, true); // direct access to world

o6

}
}
}
}

int test (double x, double y) {
double tmpX = 0, tmpY = O0;

int i = 0;
do {
double tmp2X, tmp2Y;
i++;
tmp2X = tmpX*tmpX - tmpY*tmpY + x;

tmpX tmp2X;

tmpY = tmp2Y;
} while (((tmpX*tmpX + tmpY*tmpY) <= 4) && (i < ITERATIONS));
return 1i;

}

tmp2Y = 2*xtmpX*tmpY + y;

ik
iC2 3

EREEEEE

e
2 s

| LT

gy

cires

Erteee
LiL]

Fig. 6.5: The Mandelbrot set drawn with leaves

Algorithmically Demanding Problems

A third category of exercises consists of problems which can be described as
“algorithmically demanding”, at least for beginners. The idea of these exercises
is to use JavaKara as a visualization tool which allows students to concentrate
on the algorithm. Examples include finding the shortest path out of a labyrinth,
solving the Queen’s problem, or pattern recognition with neural networks.

As an example, we show the implementation of Lindenmayer systems with
JavaKara. The biologist Aristid Lindenmayer used simple deterministic context-
free grammars to describe the growth of plants. Assume we have a turtle graph-
ics system where F denotes a step forward, and L and R denote left and right
turns of a constant angle, say 90°. These three commands can be used as the
alphabet for Lindenmayer grammars. A small grammar could consist of the sin-
gle replacement rule F — FLFRFRFLF. If the initial string is F, it is replaced by
FLFRFRFLF in the first iteration, and by FLFRFRFLFLFLFRFRFLFRFLFRFRF-
LFRFLFRFRFLFLFLFRFRFLF in the second iteration, and so on. The resulting
strings describe snow flake curves (figure 6.6).

o7

Fig. 6.6: A simple Lindenmayer system

The following listing shows an extract of an implementation of Lindenmayer
systems with JavaKara. A simple find/replace rule specifies how the string is
to be generated. The method interpret parses this string and moves the bug
through the world accordingly. It also illustrates the concept of an interpreter
in a graphical manner.

public class PatternGenerator extends JavaKaraProgram {

/*x Execute the F, L, R commands in string. */
void interpret (String string, int stepLength) {
for (int i = 0; i < string.length(); i++) {
if (string.charAt(i) == ’F’) {
forward(stepLength) ;
}
else if (string.charAt(i) == ’L’) {
kara.turnLeft();
}
else if (string.charAt(i) == ’R’) {
kara.turnRight();
}
}
¥

// rest of class not shown

}

Another example has its origin in the Bundeswettbewerb Informatik, a program-
ming contest in Germany for pupils and students under the age of 21. One
problem of the 2001/2002 contest was to program a mouse to find the shortest
way from an arbitrary starting position to a piece of cheese within the labyrinth.
Figure 6.7 shows an example of such a labyrinth for JavaKara, where the cheese
is replaced by a leaf.

The original solution is available for download from the official web page of
the contest [Bun02]. The solution is quite complex. First, it reads a description
of the labyrinth from a text file and constructs a data structure to represent
the labyrinth. Second, it determines the current position of the mouse in the
labyrinth. The position of the mouse is not given in the map which describes
the labyrinth. Rather, the programmer must derive its position by moving the
mouse through the labyrinth until its path uniquely defines its current position.
Third, the shortest path to the target position must be determined.

With JavaKara, the first step is not necessary, since the world is directly
accessible. Further, it provides a natural visualization for this problem. The
following listing shows part of a JavaKara solution of the problem which was
implemented by Markus Bréandle. The method uses a dynamic programming

o8

»
»
»
¥
»
»
»
¥
»
»
»
»
»
»
»
»
»
»
»
»

L2 o R
m R RRARR R RRRRRR R
L mR b
n R RRARRRR R RRRR R
L. R & R AW b
n RRRRARRBRRR BRRR R
. b b
RARRRRR RBARRR B RRBR
L2 o " b
R RRRRR RRRRRRR R R
L L b
n RRRRARRRRARBRRBR B B
L2 L
n RRAR RARRRBRRBRBR RRER R
L "R R R
m R R R RRRRRR R R R
moR R R R b
» TR R TR TR R SR IR R TR

”
PR PR TR R T TR R R R R R R

Fig. 6.7: The ladybug must find the shortest path to the leaf

approach to find the shortest path: it determines all shortest paths backwards
from the goal position through the labyrinth.

void determinePaths() {
ArrayList squaresToConsider = new ArrayList();

Point leafPosition = findLeaf();
squaresToConsider.add (worldSquares[leafPosition.x] [leafPosition.y]);

while (squaresToConsider.size() > 0) {
WorldSquare currentSquare = (WorldSquare) (squaresToConsider.get(0));
for (int i = 0; i < 4; i++) {
int posX = currentSquare.posX + deltas[i] [0];
int posY = currentSquare.posY + deltas[i] [1];
if (validCoordinates(posX, posY)) {
if (!world.isTree(posX, posY) &&
! (worldSquares [posX] [posY] .hasPrecedent)) {
worldSquares [posX] [posY].setPrecedent (deltas[i]l [2], currentSquare);
squaresToConsider.add (worldSquares [posX] [posY]) ;
}
}
¥
squaresToConsider.remove (0) ;
}
}

The Lindenmayer and shortest-path examples show the broad range of problems
which can be solved in JavaKara. The focus is on the algorithms themselves,
not on Java. For example, Lindenmayer systems can be used to discuss iteration
vs. recursion, and there are many solutions to the shortest-path problem.

99

6.4 Related Work

JavaKara can be compared to introductory Java programming environments
such as Bergin’s KarelJRobot [Ber02] or IBM’s RoboCode [IBMO02] which are
discussed in more detail in appendix A.

Note that the JavaKara environment does not attempt to be a full-blown
Java programming environment aimed at beginners like the BlueJ environment
by Kolling and Rosenberg [KRO1]. BlueJ’s objective is to teach object-oriented
programming in an environment designed to illustrate concepts like inheritance
or object instantiation to beginners.

6.5 Conclusions

The transition from the finite state machines of Kara to Java addresses the
“mother-tongue problem” of teaching programming. For students, their first
programming language becomes their mother-tongue of programming. If they
encounter only one programming language during their education, they tend
to equate programming with their particular mother-tongue programming lan-
guage. For this reason, many curricula recommend introductory programming
courses based on at least two languages. Kara and JavaKara are two different
‘languages’. Students can experience what it means to implement programs in
different languages. Its intuitive and visual user interface has made JavaKara
very popular in many schools at different levels.

60

Chapter 7

Experience and Evaluation

Kara, TuringKara, MultiKara, and JavaKara are published on the web, along
with teaching materials: a wide selection of exercises and their solutions, and
slides for introductory presentations. The EducETH (www.educeth.ch) web
server registers, on average, about 1’000 downloads of the applications per
month. A growing number of institutions and people have web sites for their
own courses which feature their material for the environments. Most notably,
Horst Gierhardt of the Immanuel-Kant-Gymnasium, Heiligenhaus, Germany,
has contributed much material to EducETH’s Kara site.

From various feedback, we know that Kara is used extensively in Germany,
Austria, and Switzerland. Kara is not only used at the high school level, but
also in K6-8 grade schools, and even in introductory courses at universities. The
feedbacks also show that if someone has a problem using Kara, the problem is
typically related to Java or to the operating system, and can easily be solved.
The following list gives a sample of the wide range of institutions in which the
Kara environments are used in addition to the department of Computer Science
at ETH Zurich:

Teacher education at universities. For example: the Humboldt uni-
versity in Berlin, Germany; the university of Karlsruhe, Germany; the
university of Potsdam, Germany; the university of Bielefeld, Germany;
the university of Klagenfurt, Austria; the pedagogical academy of Steier-
mark, Austria.

Colleges of higher education. For example: the college of the state of
Saarland, Germany; the college of higher education of the canton of Aar-
gau, Switzerland; the college of higher education of Vorarlberg, Austria.

Secondary schools. For example: the Saint Franziskus secondary school
of Kaiserslauten, Germany; the secondary school of Haren, Germany; the
Ketteler secondary school of Hopsten, Germany; at the Tulla high school
of Rastatt, Germany; at the vocational diploma school of Zug, Switzer-
land; at the high school of Luzern, Switzerland; at the German school in
Barcelona, Spain.

Web references. The Kara web site is also linked by many educational
web sites, for example: the education server of the state of Brandenburg,

61

62

Germany; the education server of the state of Bayern, Germany; the state
institute of school in Bremen, Germany; the school council of the town of
Stuttgart, Germany.

7.1 Kara: Introductions to Programming

Kara has been used at ETH Zurich for the past four years in several courses to
teach the fundamentals of programming to high school students who never had
any or only very little exposure to programming. The feedback we have received
from these students is highly positive. They appreciate the fact that after a brief
demonstration and about half an hour of getting to know the environment, they
can start solving interesting problems. They also appreciate that within a few
hours, they succeed in solving non-trivial problems. The feedback on the Kara
environment from the surveys of the high school students can be summarized
as following:

Motivating. Not surprisingly, Kara was most motivating for those stu-
dents with the least prior experience in programming. All students found
Kara either “very motivating” or ‘motivating’.

Easy-to-use. All students found the handling of Kara’s user interface
either “very easy” or ‘easy’.

The students’ written comments show that Kara allowed them to focus on prob-
lem solving, on the logic and the correctness of their programs, without being
distracted by the environment or by the textual syntax of a “real-world” pro-
gramming language. They also appreciated the simplicity of the user-interface.

Teaching the Nintendo Generation to Program by Guzdial and Soloway may
offer an explanation as to why students like the Kara environment [GS02].
Whereas “Hello World” got students excited when computers were still text-
based, today’s “Nintendo generation” grows up in multimedia environments.
As the article notes, engaging students is critical for them to learn something
well. And they will become engaged if the learning environments correspond
more to their every day use of computers than to a text-based view of comput-
ers. Maybe this explains our observation that students often continued using
the Kara environment after class. Its game-like appearance reminded them of
computer games, and in combination with the simplicity of the programming
model, they felt really involved.

Kara has also been used in the past four years in several courses to show
teachers, often with little background in computer science, a way to teach the
fundamentals of programming to their students. The feedback we have received
from these users is also highly positive. The non-computer scientists among the
teachers appreciate the fact that they succeed in solving non-trivial problems
after being coached for just a few hours. More expert users are surprised to
learn that the conceptually simple structure of programming using finite state
machines raises fundamental questions of computer science.

Kara was also used in a course on theoretical computer science at ETH
Zurich. The course used Kara to illustrate the concept of finite automata in a
way which allowed the students to gain hands-on experience. They had to solve
a number of simpler tasks as well as one of the more challenging tasks. They

63

could choose implementing either Bubble sort on bars of leaves or the binary
Pascal triangle.

7.2 TuringKara in a Course on
Theoretical Computer Science

The TuringKara environment was used in a course on theoretical computer sci-
ence at ETH Zurich. Students must attend this course in the fourth semester
of their computer science studies. The course covers topics such as models of
computation like the Markov model, finite state machines, Turing machines, dif-
ferent types of languages, computability. The TuringKara environment provided
hands-on experience in creating Turing machines. Students had to implement,
as a simple exercise, binary addition. As a more complex and more challenging
exercise, they had to implement binary multiplication. We also conducted a
contest to find a three-state TuringKara busy beaver, an open problem which
students eagerly tackled. The result is presented in the TuringKara chapter.

At the end of the semester, we conducted a survey with the 131 students who
had attended the course. The survey addressed two questions. First, whether
students thought their learning benefited from using the environments, and sec-
ond, what they thought of the quality of the user interface of the environments.
The latter part of the survey was based on the ideas presented by Hassenzahl et
al in Engineering Joy [HBBO1]. This article introduces questionnaires to deter-
mine the users’ perception of hedonistic qualities of the user interface of a given
software. The basic idea is to use so-called semantic differential questions to
measure the hedonistic qualities. For example, is the user interface ‘innovative’
or is it ‘conservative’? Is it ‘impressive’ or ‘nondescript’?

The results of the survey show that practically all the students thought
the TuringKara environment was useful with respect to learning about Turing
machines; 86% gave it the highest or second-highest possible ranking (figure
7.1). A number of students explicitly said that TuringKara made it easier to
“see what a Turing machine does” in comparison to static Turing machines on

paper.

TuringKara: How would you judge
the utility of the environement ?

Fig. 7.1: Students’ assessment of their learning benefit with TuringKara

64

As to the user interface, students judged the user interface of the TuringKara
environment to be ‘outstanding’, ‘clean’, and ‘interesting’ (figure 7.2). However,
it is interesting to note that, in comparison to the Kara environment which
was also used and evaluated in the course, students judged TuringKara’s user
interface slightly less ‘outstanding’ and also slightly less ‘clean’ than Kara’s
user interface. The reason is probably that TuringKara is more complex and
the world objects more abstract.

TuringKara: How would you judge TuringKara: How would you judge TuringKara: How would you judge
the user interface (1) the user interface (2) the user interface (3)

20 20 —
1o |—| 10 10 H
i 1. .
0 o | 1 o — [1
Q o\@@“ SR

Fig. 7.2: Students’ assessment of TuringKara’s user interface

7.3 MultiKara Experience

As of yet, we have only very little experience with MultiKara, since it was added
to the Kara application only in 2002.

7.4 JavaKara: Introductory Java Courses

The JavaKara environment is second in popularity to the Kara environment.
Our own experience and the feedback we receive correspond to the feedback
concerning Kara. Teachers appreciate that JavaKara gives them a comfortable
way to teach Java to novices. One difference is that more technical problems
are reported due to the fact that JavaKara requires the full Java software de-
velopment kit to be installed. These problems are usually easily solved.

7.5 Lessons Learned

Our experience convinced us that the conceptually simple programming model
of finite state machines is a convenient vehicle to introduce novices to program-
ming. We believe that the simplicity of the model is the most important reason
for the success of the Kara environments.

Another important reason for the users’ acceptance of the environments
is their simple and intuitive user interface. Kara is used in class for just a
few hours. It is therefore imperative that the user interface be as intuitive as
possible.

65

From the received feedback, and from the comments of Adele Goldberg (pri-
vate communication), we further learned that it is crucial for the Kara web
site to clearly document the “learning paths” through the environments, as well
as the different possible learning targets of the environments. We completely
redesigned the original web site to achieve this goal.

66

Appendix A

Environments for
Learning Programming

In this appendix, we summarize approaches on how to introduce novices to pro-

gramming. Brusilovsky et al classify the various approaches in three categories
[BKMT94]:

Incremental approach. This is the classical and most widespread ap-
proach. The students are presented the constructs of the programming
language to be learned step by step. Each construct enhances their abili-
ties to solve incrementally more difficult problems.

Sub-language approach. Another approach is to select a subset of a
programming language, and to use this subset to teach particular concepts.

Mini-language approach. Mini-languages are small programming lan-
guages designed solely for the purpose of programming education. Stu-
dents learn programming by controlling the actions of, for example, a
robot living in a virtual world.

In a later paper, Brusilovsky et al conclude that the mini-language approach is
very effective, and that mini-languages can be applied to a wide range of target
groups, from pupils in elementary schools to students at college level [BCHT97].
It is important to note that “the application of a mini-language is never the goal
itself, but a method of mastering a set of notions and skills”.

In their article The black bozx inside the glass box: presenting computing con-
cepts to movices, Du Boulay et al discuss fundamental, desirable characteristics
of programming languages and environments designed for educational purposes
[dBOM99]. Summarizing both [BCH'97] and [dBOM99], the following criteria
should be satisfied:

Decrease complexity. Each program controls the actions of some ma-
chine. This machine is usually a PC, with its processor, main memory, and
screen — a very complex machine. The first thing students have to acquire
is a basic understanding of the machine to be programmed. Therefore,
mini-environments should use a simpler target machine than the PC.

67

68

Hide complexity. The actions of the machine should be “black boxes”,
their inner workings hidden from the programmer. The semantics of the
actions should be easy to grasp. The same holds for the current state of
the machine. It may be complex internally, but its semantics should be
simple enough to visualize.

Visualization. It is important to have a graphical display of the actions
and of the current state of the machine. The programmer should perceive
the machine as a “glass box” of which all aspects can be visualized. On top
of that, the visualization of program execution helps track the evolution
of the current state of the machine.

Small language. A language with a small set of constructs is a must
for an introductory programming language. Students should be able to
master the mini-language in its entirety in as little time as possible.

Easy-to-use programming environment. A mini-version of an inte-
grated development environment should support writing syntax error free
programs to help students focus on the semantics of their programs.

Interesting problem set. Problems which are abstract or hard to define
distract the novice from learning how to solve problems algorithmically.
Problems which can be easily, maybe even graphically explained are better
suited to novices’ needs.

The mini-language approach meets these requirements. The languages are typ-
ically used to program some active entity, an actor living in a simple world
on the screen. Examples of actors are robots, turtles, or any kind of phantasy
figure. Students learn programming by instructing the actor to solve given prob-
lems. Mini-languages and mini-worlds provide instant visualization: Students
can literally observe what their programs are doing.

It is important for a good mini-environment to have a stimulating and mo-
tivating world and actor for which interesting and easily understandable prob-
lems can be formulated. A careful balance must be maintained between the
complexity of the world and the possible problems for the actor. On the one
hand, learning the ropes of the mini-environment should require as little time as
possible. On the other hand, it must be possible to design challenging problems
to show students that programming is an intellectually demanding process.

A.1 Logo and the Turtle Geometry

The mathematician, computer scientist, and psychologist Seymour Papert con-
ducted renowned projects in the 1970’s at the Massachusetts Institute of Tech-
nology with the goal of making children the ‘builders’ of their own intellectual
‘buildings’. In particular, the goal was to enable children to discover geometric
knowledge on their own. The computer was to serve as a powerful tool with
which the children could formulate algorithms to create certain patterns and
test these algorithms. To this end, the language Logo was created as a dialect
of the LISP programming language.

Logo is a general-purpose language. To adapt it for the purpose of teaching
geometry, the sub-language approach was used in combination with the idea

69

of the mini-language approach. The resulting “Turtle Geometry” involves pro-
gramming a turtle, either a robotic one drawing on the ground, or a virtual one
drawing on the screen.

Papert intended Turtle Geometry to be a mathematics learning environment
for children. He observed that a child who has difficulties with mathematics
is often labelled mathematically untalented. However, a child having trouble
learning a foreign language like French is not labelled untalented for French.
We know that if the child had grown up in France, it would have learned French
without any conscious effort. Papert argued that in “Math Land”, children
would learn mathematics as naturally as their mother tongue. Logo and the
Turtle Geometry were his vision of Math Land. Children should be enabled to
“learn by making” which in Papert’s view is more than learning by doing.

The turtle has a position and faces a direction, specified in degrees. These
two properties fully describe the state of the turtle and can be easily visualized.
The commands understood by the turtle are also simple. It can move forward,
painting its trail, or turn at its current position. Logo’s turtle is blind: it cannot
obtain any information about the current state of its world. This restricts Logo
programming to creating geometric patterns.

Logo supports recursion, which makes it possible to formulate algorithms
concisely. As a general-purpose language, Logo also has variables, parameters,
branches, repeat statements, blocks, and much more. Figure A.1 shows a pro-
gram painting the Snow Flake Curve (screen shot created with StarLogo):

to snowflake :length
if :length < 10
[move :length]
[snowflake :length/3
left 60
snowflake :length/3
right 120
snowflake :length/3
left 60
snowflake :length/3]

Fig. A.1: Snowflake curve

Logo is more powerful than a first glance reveals. It was Papert’s intention
to design “a computer language that would be suitable for children. This did
not mean that it should be a ‘toy’ language. On the contrary, I wanted it to
have the power of professional programming languages, but I also wanted it to
have easy entry routes for nonmathematical beginners” ([Pap80], p. 210).

A.2 Karel, the Robot

Even though Logo was not designed to teach programming, it influenced the
future development of mini-languages and mini-environments aimed at teaching
programming. The first prominent mini-environment of this type was Karel
the Robot, created by Richard Pattis in 1981 and described in his book Karel
the Robot — A Gentle Introduction to the Art of Programming [Pat95]. Pattis
places the emphasis on solving problems in a structured, well-planned fashion.
He stresses the need to distinguish the different stages: precise definition of the

70

problem, planning the solution, implementing the solution, testing the program,
and debugging. The robot is programmed in a mini-language based on Pascal
which is specially designed to meet the needs of novices.

Karel lives in a simple world, which is basically a grid. It can only move
from grid point to grid point, horizontally or vertically. Different types of objects
can be in the world, walls between the grid points, beepers on the grid points.
Contrary to Logo’s turtle, Karel has sensors telling it whether there is wall in
front, whether there is a beeper underneath, and what direction it is currently
facing. Karel carries a bag which can be used to collect beepers. It understands
commands like move, turnleft, pickbeeper, putbeeper.

An introduction to programming with Karel is typically structured by ex-
ercises of increasing complexity, which incrementally introduce the basic com-
ponents of an imperative programming language: if branches, while loops, and
procedures. The concept of invariants can be introduced in an intuitive, graph-
ical manner. The following listing shows a sample program in which Karel
endlessly tracks the wall of a room.

BEGINNING-OF-PROGRAM
DEFINE-NEW-INSTRUCTION
turnright AS BEGIN
turnleft;
turnleft;
turnleft;
END;
DEFINE-NEW-INSTRUCTION wallfind AS BEGIN
WHILE front-is-clear DO
move;
END;
BEGINNING-OF-EXECUTION
wallfind;
WHILE front-is-blocked DO BEGIN
turnright;
WHILE front-is-clear DO BEGIN
move;
turnleft;
END
END
END-OF-EXECUTION
END-OF-PROGRAM

To experienced programmers, Karel’s language is simple. However, novices are
confronted with two hurdles. First, they need to debug their program text be-
fore the compiler accepts it. This can be very frustrating for beginners trying
to express themselves in a language which is still foreign to them. Second, and
more importantly, Karel’s language is procedural. There is an inherent com-
plexity to procedures, the need to understand the concept of order of execution.
The procedures are not written in the same order as they are executed. To com-
prehend what happens, one needs at least a rudimentary grasp of the concept of
the procedure call stack. For novices, understanding this concept is a challenge;
understanding recursive algorithms is even more challenging.

71

A.3 Successors of Karel the Robot

A brief history of the mini-language approach is given in [BCHT97]. It is inter-
esting to note that in Russia, mini-environments were introduced in the early
1980’s which were similar to but developed independently of Karel the robot.
Since the first version of Karel the robot appeared, there have been numerous
re-implementations.

To help beginners getting the structure of their programs right and avoiding
unnecessary typos, the Karel Genie environment by Chandhok and Miller in-
cludes a structure editor (figure A.2; screen shot taken from [BCH97]) [CM89].
The programmer writes programs using context-sensitive menus which offer the
legal program structure elements for the current cursor context. Little has to be
typed manually, keeping the number of syntax errors low, and thereby relieving
the programmer of “syntax debugging”. Karel Genie was part of a whole fam-
ily of structure editors implemented on the Macintosh platform. They became
quite popular in the US in the 1980’s [MPMV94].

Add (plm)eDesign
chars levels
15 e axm

Main Execution Block)

Call Stack
turnaround
Pick-and-Move
Add
{Main Execution Block}

turnoff

Add

Pick-and-Move Add

turnaround turnaround =

Add (plm)

fAdd World (3+2)

e -
new-instructions:

Define-New-Instruction turnsround As
°

Begin
turnleft
End;

Define-New-Instruction Pick-and-Move 2|
°

Begin 11 2 2 4 5 6

Kaorel Contral Ponel

step R T2
Troce @ ANl () None 2oped
corner: 3,3 E

Direction @ Forward () Reverse

Boepers:d Beaper Bag: 1

Fig. A.2: The Karel Genie environment

Later implementations of the Karel approach were based on other languages
than Pascal. When object-oriented programming became popular, Bergin in-
troduced Karel++, a robot programmed either in a language based on C++
[Ber97] or in a language based on Java [Ber02]. The emphasis is on teaching
object-oriented concepts, in particular the subdivision of a system into classes.
JKarelRobot by Buck and Stucki can be programmed either in the language of
the original Karel, in a language based on Java syntax or in a language based on
LISP syntax [BS01]. There are other mini-environments for introducing Java,
for example, the hamster by Boles [Bol99]. However, the lifespan of these envi-

72

ronments is limited to the period of time during which their underlying language
is popular.

Some mini-environments attempted to make the world of the robot more
interesting by introducing 3d graphics. The idea seems to have been introduced
first in 1992 by Hvorecky [Hvo92]. A more recent implementation is The Robot
Karol by Freiberger and Krsko [FK02].

A.4 Game-like Environments
Targeting Children

A number of more game-like programming mini-environments targeted at chil-
dren have been built, though not all of them with the goal of teaching program-
ming per se.

For example, KidSim alias the commercial StageCast Creator by Smith et
al was developed with the ultimate goal of solving “the end-user programming
problem” which is to empower non-computer scientists to program active agents
[SCS94]. As a step towards this goal, KidSim addresses end-user programming
in the context of agents living in micro-worlds. In contrast to Karel the robot
and its successors, children using KidSim have more freedom in constructing
their own worlds and their own actors. For example, they can paint an actor
and define arbitrary attributes such as height, weight, or likes chocolate, and use
these attributes in their programs. A KidSim program is specified in terms of
graphical rewrite rules. Figure A.3 shows a simple game from the tutorial. The
rule in the rule editor on the bottom right advances the agent if there is no
obstacle in front of it.

The graphical rewrite rules are constructed using programming by demon-
stration mechanisms. One problem is that the order of the rules is crucial, as
more than one rule might apply to a given situation. In KidSim, there is no
concept of state with which the rules could be subdivided. This makes it hard
to get the order of the rules right.

Kahn’s ToonTalk environment has an ambitious goal [Kah96]. It attempts
to be a self-teaching programming environment for children. It is based on
the theoretical model of concurrent constraint programming. The concepts of
this programming model tend to be difficult to grasp even for computer science
students. In ToonTalk, programming is done using “accessible metaphors”.
Everything is graphically represented by a metaphor which should be easy to
understand. For example, an asynchronous communication channel is repre-
sented by birds which have a common nest. When given a message, a bird
flies to its nest and puts the message in a queue of messages already waiting to
be collected from the nest. The idea is that children should be able to under-
stand the metaphor without having to think about the underlying computing
primitive. In the same fashion, there are metaphors for all computing concepts
used.

In contrast to most other mini-environments, ToonTalk is explicitly based
on the theoretical general-purpose programming model of concurrent program-
ming. This may explain why ToonTalk is rather demanding when one wants to
construct robot programs which achieve something meaningful.

The Alice environment by Dann et al is a “interactive animation” mini-

73

Move Right

- WD

move % [CRa |

Fig. A.3: StageCast example. Top: world; bottom: all rules, and rule editor

environment based on 3d virtual worlds [DCP00]. Its main goal is to visualize
concurrent program execution in such a manner that a debugger is unnecessary.
The user constructs a 3d virtual world like the example in figure A.4. The anima-
tion sequences access elements of the scene via a tree structure representation.
The animation sequences shown in the figure make the bunny face the helicopter
and hop, and the helicopter blades spin concurrently. The sequences are cou-
pled with events (not shown in the figure), that is, HelicopterBladesSpin is
executed upon the start of the animation, and BunnyHop is executed when the
user clicks the space bar.

In Alice, there is no concept of state, as the animation sequences are inde-
pendent of each other. The only state in Alice is the state of the world itself.
As there are no variables, an animation sequence always reacts in the same
way, regardless of what other parts of the program are doing or what happened
before.

A.5 Frameworks for Learning Programming

A popular approach to teaching programming is the usage of small frameworks.
The idea is that the instructor gives students a framework structure which they
extend. Typically, the framework contains code which visualizes many aspects
of possible extensions. This approach is usually applied at an intermediate-
advanced level, with the goal of teaching aspects of object-oriented programming
like inheritance and related principles. Basically, this approach could be de-
scribed as using the visualization of the world and actor of a mini-environment,

74

The Mouse...
) Moves cbject.

Raises/Jowers
Turms lefH/right
Turs forward/bocK
Tumbles:
Orbitsiobject

gy, <R sty

Reset Camera,

Undo W Ti€ach - -
Actionl kI‘V\e. RESET S‘rar“f
S

|@ BunnyHop = DolnOrder

@ Bunny Head PointAtiHelicopter, more...)
@ Bunny Move{Up, 1/2, more...)

@ Bunny Move(Down, 172, more...)

@ Bunny Head PointAticamera, mare...)
@ HelicopterBladesSpin = DaTogsther

@ Helicopter. TopShaft Turn{Left, 30, Duration=90, Style=Abruptly, more...)

@ Helicopter BackShaft.Rotor Tumi{Up, 45, Duration=90, Style=Abruptly, more...)

Fig. A.4: Alice example. Top: world scene,bottom: two animation sequences

but using a real-world programming language.

For example, the Get A Life framework by Pattis lets students build sim-
ulations of artificial life systems such as cellular automata or animal flocking
behavior by extending the framework [Pat97]. The framework provides rich
graphical visualizations.

Bergin’s KarelJRobot implementation can also be viewed as a framework
[Ber02]. Students do not work within a mini-environment. They extend the
robot classes externally, using the classes as a framework on which to build
their robot applications.

A more recent example of a framework is RoboCode [IBMO02]. As figure
A.5 shows, RoboCode is both a Java framework which the programmer can
extend and a mini-environment, as it provides a simple integrated programming
environment. The basic idea is slightly martial and game-oriented. Robots are
programmed to fight each other on a battlefield initialized by the user.

The following listing shows a RoboCode program. Its main program rocks
the robot back and forth, swinging its gun around. RoboCode is inherently
multi-threaded, as any number of robots may be fighting each other. It also
provides basic event handling mechanisms to allow the programmer to react to
external events. In the example, the robot fires each time another robot crosses
its gun sight.

package man;
import robocode.*;
public class MyFirstRobot extends Robot {

public void run() {
while (true) {

75

SLTE e T T —

le_Robot Oplions _Help

CompierHelp

=l=1x
package sawple; =
import robocode. *;

yrr

* Spinkat - a sample robot by Mathew Nelson

* Moves in a cirle, Firing hard uhen an eneuy 13 dete
=
public class SpinBot extends AdvancedRobot

Jon
* Spinkot's run method - Circle
13
public veid run() {
while [crue) {
77 Tell the game that when ve take move,
7/ we'll also want to tarn right... a lot.
secTurnRight(10000) ;
77 Linit our speed to §
setlaxvelocity(s) ;
/7 Start moving (and turning)
ahead(10000) ; spin w MyFirstDroid (5)

/4 Repeat. 5
J4 | _>l_‘

Line: 25

Fig. A.5: The RoboCode environment

ahead(100);
turnGunRight (360) ;
back(100) ;
turnGunRight (360) ;

public void onScannedRobot(ScannedRobotEvent e) {
fire(1);
}

RoboCode is more complex than most of the mini-languages mentioned
above, because the robots are programmed in Java and the programmer must
deal with event handling.

A.6 Languages Designed for Education

Probably the first successful language designed for educational purposes was Ba-
sic. Kurtz recounts its history in vivid detail in [Kur78]. It is interesting to note
that the rationale for Basic is basically the same as that for mini-environments:
“While science students will learn computing naturally and well, the nonscience
group produces most of the decision makers of business and government [...]
This [...] begged the conclusion that nonscience students should be taught com-
puting”. Kurtz and Kemeny felt that merely lecturing about computing was not
good enough, but that programming languages such as Fortran or Algol were
too complex for their purposes. They developed Basic, putting ease-of-use first
of all considerations. For example, to the programmer, there is no distinction
between source code and executable even though Basic originally was a com-
piled language. Also, there is no distinction between integer and real numbers,
because “to our potential audience the distinction between an integer number
and a noninteger number would seem esoteric. A number is a number is a num-
ber.” Basic quickly attracted a large number of users. It is still used today: in
education, an often used implementation is TrueBasic; in industry, a favorite is
Microsoft’s VisualBasic.

76

In the early 1970’s, Wirth developed the language Pascal as a concise,
strongly typed language [Wir71]. Pascal was an ideal vehicle for the systematic
programming approach favored by Wirth [Wir73]. He wanted to teach pro-
gramming as a discipline in its own right, as the systematic construction and
formalization of algorithms. Pascal was a huge success, both in education and
in industry. There were numerous implementations and variants which are still
in professional use today.

Even though to the professional computer scientist, Basic and Pascal are
‘small’ languages whose syntax can be captured in a small number of pages of
EBNF, they are still general-purpose languages. For the introductory purposes
of mini-environments such as Karel the robot, they were deemed to complex.

Another approach to teaching programming is the Kernel Language ap-
proach described by Van Roy and Haridi [RHO02]. They criticize that program-
ming is either taught as a craft or as a branch of mathematics. The craft
approach does not emphasize the theoretical, scientific aspects of programming,
whereas the mathematical approach is too formal and too restricted to be of
practical use. They propose an approach which Reinfelds calls Teaching of Pro-
gramming with a Programmer’s Theory of Programming [Rei02]. This approach
focuses not on a programming language, but on the underlying principles. The
Kernel language captures the essence of many different programming paradigms.
Using the Kernel language, one can study how, for example, object-orientation
can be implemented using only a small set of fundamental concepts. The teach-
ing of this approach is supported by the Mozart Programming System.

Implementing different programming paradigms using a Kernel language
is an interesting approach to study these paradigms. As part of a computer
scientist’s education, this approach can be helpful to focus not on a specific
programming language, but rather on the underlying principles. However, for
introductory programming courses as part of general education, this approach
is too technical, demanding a high degree of abstract thinking of the students.

Appendix B

User Interface Design of the
Kara Environment

The Kara environment is an educational software, and as such its user interface
was designed carefully to be as easy-to-use as possible. The interface of any
educational software should not obfuscate the concepts to be learned. In Kara’s
case, it must be obvious to users that they are constructing worlds and finite
state machines. Furthermore, the time to learn the handling of the software
should be as short as possible, because users use it only for a brief time. This
is particularly true for an environment like Kara which is designed to be used
by students for just a few hours. Another goal of the user interface design
is that students should enjoy working with the environment. Programming is
often conceived as tedious by novices. The environment should not reinforce
this view by being itself tedious, or even dull.

B.1 The World Editor Window

In terms of Tidwell’s human-computer interaction pattern language Common
Ground, Kara’s world editor is a WYSIWYG editor [Tid02]. With the Toolboxes
for controlling the robot and the world objects, this area of the main window
constitutes a Central Working Surface. The user interface controls needed to
edit the world are grouped together with the world the user is editing.

Drag&Drop. Localized Object Actions group object actions together and
spatially localize them close to the objects they work on. One example
is drag&drop, which is an important user interface metaphor in the Kara
environment. The user can drag&drop world objects, not only within the
world, but also from the world object toolbox into the world. This is what
users intuitively expect and try to do, so the user interface conforms to
their expectations (figure B.1). The drag&drop metaphor is also used in
the program editor.

7

78

arcdrod £
B A

Fig. B.1: Dragging objects into the world

Visibility. The environment emphasizes the principle of visibility. Every
action the user can take should be immediately visible, not hidden in a
menu. However, some seldomly used features are available only via a
popup context-menu by right clicking with the mouse (figure B.2). This
is another example of Localized Object Actions.

W@ @ Tl ciearan

@ @ @ Copy world
B B
@ @ Export as JPG ...

Fig. B.2: Popup context menu in world editor

The user interface literature warns against distinguishing novice and ex-
pert users of a software (see, for example, Raskin’s Humane Interface
[Ras00]). The context menu of the world editor is not an “expert mode”
of the environment. Its features are invisible, yet available to all users.
However, many users will not need these features. Therefore, they were
removed from the visible working surface.

Error Messages. The Important Message pattern suggests making error
messages visually obvious, maybe even using sound to notify the user.
The Kara environment uses red color to distinguish between normal dialog
windows and error message windows.

B.2 The Program Editor Window

The principles applied to the world editor were also applied to the program
editor. There are two Central Working Surface instances, one for the state
machine diagram editor, and one for the state transition table editor.

The diagram editor, originally implemented by Reto Lamprecht [HLO1], has
a Toolbox to create, edit, and delete states. The user can drag&drop to move
states in the diagram, and to create transitions between states (figure B.3 top).
The state transition table editor also has a Toolbox to its left, containing com-
mands which can be inserted into the transitions via drag&drop (see figure B.3
bottom).

79

tart —=| pacman |

Fig. B.3: Drag&drop in the program editor

Both the state diagram editor and the state transition table editor have
Localized Object Actions in the form of context menus. The menus let the user
copy&paste states and transitions. Again, these features are not a must to work
with the program editor, but optional short-cuts.

The program editor is entirely visual. The user only needs to type names for
the states. With respect to the environment, the names are irrelevant and could
be omitted. However, it makes programming easier for users because they can
identify states by their names rather than by their position in the state diagram.

B.3 Executing Programs

Visualizing the execution of programs is done in the standard technique of al-
gorithm animation. The program code and the data structures modified by
it are both displayed to allow the user to trace execution (see, for example,
[SDBP98]). This technique is applied in most mini-environments as well as pro-
fessional debuggers. Figure B.4 shows the situation before and after a command
was executed.

LI00 -
T E =

], 00OQ@ e -] .. TB BEE
. O@ [ooomen |

T o0 -] W
TLOOOO@r - .. T EEE

Fig. B.4: Executing a single step of a program

‘Mode’ is a concept often criticized by the user interface literature. The
problem is that the program may react differently to the user’s actions depend-
ing on the current mode. Users must remember in which mode they put the
program. Nevertheless, the Kara environment has two modes. First, users can

80

put the interpreter in deterministic or non-deterministic mode in the preferences
dialog. They can keep this dialog open so that the current mode stays visible.
The second mode distinguishes editing from executing programs. While a
program is executed, users are prohibited from modifying the program. If they
attempt a modification, an error message explains that they must first stop
execution. It would be possible to do without this mode. However, we felt users
should follow the edit—execute cycle typical of most programming environments.

Appendix C

Architecture and Design of
the Kara Environments

The main goal in designing the overall architecture of the Kara environments
was to have an architectural framework which could accommodate all environ-
ments (Kara, TuringKara, MultiKara, and JavaKara). It became clear that the
structure of the system should accommodate the following requirements:

World editor. The world editor must be able to manage varying sets of
“world objects” with different semantics. For example, the TuringKara
environment uses a set of world objects (read/write head, 0, 1, O, etc.)
different from that of the ladybug environments (ladybug, tree, leaves,
mushrooms).

Program editor. It must be possible to use at least two different pro-
gram editors: a state machine editor for the environments based on the
state machine programming paradigm, and a text editor for the JavaKara
environment. The program editor must also be capable of supporting the
creation of programs for multiple actors.

Program interpreter. It must be possible to use at least two different
interpreters: a state machine interpreter and a Java ‘interpreter’.

Scheduling and the Number of Actors. Some environments have a
single actor which is controlled directly by an interpreter. Other environ-
ments have multiple actors and need a scheduler to manage the individual
interpreters of these actors. The design must provide for both cases.

User interface. The common parts of the various user interfaces must be
immediately recognizable to a user working with different environments.

With the goal of making the development of such a family of environments
manageable, the following technical requirements had to be met:

Common code base. The basic idea behind the architecture of the ap-
plications is to maximize the common code base in order to make main-
tenance of all applications easier. In many cases, components of one en-
vironment are specialized adaptations of abstract, generalized common
components.

81

82

Modular structure. It must be possible to easily add a new environment
to the existing environments. This means that new environments are
extensions of the existing environments in the object-oriented sense. For
example, the MultiKara environment is built upon the Kara environment
and reuses many of its components.

Another requirement, not related to the structure of the system, was that the
Kara environments should be platform-independent and run on as many plat-
forms as possible. For this reason, the software is written in Java. The envi-
ronments have been successfully tested on Windows (95, 98, 2000, ME, XP),
Linux, Solaris, and Mac OS X with a number of Java versions (Java 1.2, 1.3,
1.4).

C.1 Overall System Architecture

From the above requirements, the division of the application into three subsys-
tems based on two major abstractions was derived. The first abstraction is that
of an editor. Both the world editor and the two program editors are concrete
implementations of this abstraction (figure C.1). The second abstraction is that
of an interpreter.

editor
abstraction

A

Fig. C.1: Implementations of the editor abstraction

The three subsystems are the world editor subsystem, the program editor
subsystem, and the interpreter subsystem (figure C.2). For each subsystem,
there are implementations for the different environments. The applications com-
municate with these subsystems through interfaces that are designed to be as
small as possible in order to allow a maximal degree of freedom on both sides.

Application
World Editor Program Editor Interpreter
Subsystem Facade Subsystem Facade Subsystem Facade
(publicly visible) (publicly visible) (publicly visible)

Implementation
(hidden)

Implementation
(hidden)

Implementation
(hidden)

83

Fig. C.2: Application and its three subsystems

The environments comprise approximately 50 packages containing more than
380 classes, with a total of more than 72’000 lines of code. Figure C.3 shows some
of the top level packages of the environments and their dependencies, without
their subpackages. Note that the educeth term in the package names denotes the
EducETH web server which hosts the applications. The kapps package (short
for “kara applications”) is the top level package for all environments.

ch.educeth.interpreter ch.educeth.editor ch.educeth.kapps

T T 7 i

| | |

| | |
|

| ch.educeth.kapps.actorfsm ch.educeth.kapps.karaide

ch.educeth.kapps.karaworld /I\
|

ch.educeth.kapps.multikaraide

Fig. C.3: Top level packages of the environments (extract, without subpackages)

The following sections discuss the structure of the data models of the envi-
ronments. The user-interface related classes are not discussed. For example, the
karaworld package models the world of Kara and contains a subpackage editor
which contains the graphical world editor. The editor and other user interface
components are basically views on the data models, typically implemented as
realizations of the classical Model-View-Controller design pattern.

84

The Three Subsystems of the Environments

The main entry point of the Kara environments is the class Application in the
package kapps. The Application class sees the three subsystems through facade
interfaces. Figure C.4 shows this overall structure.

Delayedlnitializer
interface

...Progr face

DelayedInitializer DelayedInitializer
interface F——> <—— interface
..WorldEditorFacadelnterface ..Interpreterf face

\ ch.educeth.kapps.Application /

Fig. C.4: Overall system structure (details not shown)

Facade is one of the design patterns from the Design Patterns book [GHJV86].
Several of these design patters were applied in the development of the environ-
ments; any reference to a design pattern in the remainder of this chapter will
refer to the definitions of this book.

The configuration file of the applications determines the classes of facade
implementations of the subsystems to be used for the current environment. The
following listing is an extract from the configuration file. It determines which
facade implementations are to be used for the Kara and MultiKara environ-
ments.

<karamodel>
<kara>
<facades>
<worldeditorfacade>
ch.educeth.kapps.karaide.KaraWorldEditorFacade
</worldeditorfacade>
<programeditorfacade>
ch.educeth.kapps.karaide.KaraProgramEditorFacade
</programeditorfacade>
<interpreterfacade>
ch.educeth.kapps.karaide.KaralnterpreterFacade
</interpreterfacade>
</facades>
Kl== ... ==
</kara>
<multikara>
<facades>
<worldeditorfacade>
ch.educeth.kapps.multikaraide.MultiKaraWorldEditorFacade
</worldeditorfacade>
<programeditorfacade>
ch.educeth.kapps.multikaraide.MultiKaraProgramEditorFacade
</programeditorfacade>
<interpreterfacade>
ch.educeth.kapps.multikaraide.MultiKaralnterpreterFacade

85

</interpreterfacade>
</facades>
<l== .. ==
</multikara>
<l== ... -=>
</karamodel>

Defining the facades in the configuration file makes it easy to add a new
environment to the existing application. The following listing shows how the
Application class creates instances of the facades of the three subsystems, based
on the above configuration extract. After creating the facade instances, they
are connected according to the dependencies shown in figure C.4.

Class weFacadeClass = Class.forName(
Configuration.getInstance().getString(
Konstants.KARAMODEL_WORLDEDITORFACADE
)
)
worldEditorFacade =
(WorldEditorFacadelInterface)weFacadeClass.newInstance();

Class programEditorFacadeClass = Class.forName(

Configuration.getInstance().getString(
Konstants.KARAMODEL_PROGEDITORFACADE

)

)5

programEditorFacade =
(ProgramEditorFacadeInterface)programEditorFacadeClass.newInstance();

programEditorFacade.setWorldEditorFacade (worldEditorFacade) ;

Class interpreterFacadeClass = Class.forName(
Configuration.getInstance().getString(
Konstants.KARAMODEL_INTERPRETERFACADE
)
)5
interpreterFacade =
(InterpreterFacadeInterface) interpreterFacadeClass.newInstance();
interpreterFacade.setEditorFacades (worldEditorFacade, programEditorFacade);

The facade interfaces define what the application needs to know about a par-
ticular subsystem. As an example, figure C.5 shows the facade of the program
editor subsystem in detail. The application instantiates an object of a class im-
plementing the program editor facade interface. It queries the facade to obtain
its user interface (method programEditorGui), among other things. Later, the
interpreter facade will query the program editor facade to obtain the interpreter
listeners of the program editor subsystem, if any (method interpreterListeners).
The program editors use such a listener to block out user modifications to the
program while it is executed.

Editor Abstraction

In each Kara environment, there is a program editor and a world editor. The
EditorInterface in figure C.6 defines the abstract interface of a simple editor. An
editor must be able to create a new, empty content (method newFile), to write
its content to disk (method save), to read its content from disk (method load). Tt

86

() DelayedInitializer
interface
ch.educeth.kapps.ProgramEditorFacadelnterface

programEditorGui:JFrame
programEditorloToolbar:EditorloToolbar
program Editor:Editorinterface
configGui:JComponent
interpreterListeners:InterpreterListener[]
worldEditorFacade:WorldEditorFacadelnterface

Fig. C.5: The facade of the program editor subsystem

must be possible to query the editor whether there have been any modifications
since the last save, load or newFile command (method isModified).

JPaneIrI
...editor.EditorloToolba
interface

...editor.Editorinterface EditorloToolbar
disableCommand
enableCommand

hasContent newFile

save saveAsFile

load saveFile

load reloadFile

create - loadFile

newFile loadFile

addEditorListener canChangeContent

removekEditorListener

#EditorListener

currentFile +Command

content

modified editor

editorListeners uiFactory
file

Fig. C.6: Editor interface

There are no menus in the environments, with the exception of local popup
menus. The user basically controls the user interface through toolbars. The Ed-
itorloToolbar implements a simple toolbar with buttons to create, load, reload,
and save files. The editor interface and the toolbar provide a uniform interface
to all editors of the environments. They are completely independent of the type
of the content of the editor. To provide for this independence, an interface
EditorToolbarUiFactorylnterface (not shown in figure C.6) encapsulates the cre-
ation of application-dependent user interface elements, according to the Factory
design pattern.

87

Interpreter Abstraction

The state machine based environments have interpreters completely different
from that of the JavaKara environment. Some of the state machine based envi-
ronments need a single interpreter, some need a scheduler to manage multiple
interpreters. These requirements led to the definition of a simple “general-
purpose” interpreter abstraction. Figure C.7 shows the structure of the basic
interpreter-related interfaces and classes.

interface JPanel
..interpreter.Runnableinterface ..interpreter.InterpreterToolbar

interface
k> > ..interpreter.InterpreterListener

T +Adapter

interface
...interpreter.Stepablelnterface

+State

+State

A

|

|
..interpreter.Stepablelnterpreter interface
..interpreter.Stepperinterface

interface
..interpreter.SchedulerListener

-

ch.ed h.interpreter.

+Adapter

Fig. C.7: Interpreter-related interfaces and classes

The Runnablelnterface defines an interpreter which is capable of running a
program. It is assumed that after each event of interest (not shown in figure
C.7), it will notify its InterpreterListener objects. This realizes the Observer de-
sign pattern so that interested parties can follow the progress of the interpreter.
The Stepablelnterface defines an interpreter which is capable of executing a pro-
gram step-by-step. The reason for the distinction between these two types of
interpreters is that within the JavaKara environment, there is no debugger to
execute a Java program stepwise.

The Stepablelnterpreter class is an implementation of the interface, managing
the execution of a Stepperinterface object in a separate thread. This interface
basically defines a command method executeStep and a query method execu-
tionFinished. These two methods allow the interpreter to control the stepper.

A Scheduler is itself capable of step-by-step execution of a number of step-by-
step capable interpreters. The SchedulerListener interface realizes the Observer
design pattern to allow interested parties to track the actions of the scheduler.

88

The InterpreterToolbar implements a simple toolbar with buttons to start,
step, pause, and stop execution of programs. The toolbar is completely indepen-
dent of the actual interpreter instance controlled by the toolbar. To provide for
this independence, an interface InterpreterToolbarUiFactorylnterface (not shown
in figure C.7) encapsulates the creation of application-dependent user interface
elements, again according to the Factory design pattern.

Finite State Machine Model

With the exception of the JavaKara environment, all environments revolve
around finite state machines. The actorfsm package defines what a state ma-
chine is, with regard to the Kara context: a controller for some type of actor.
Figure C.8 shows the overall structure of this package.

interface interface
...kapps.actorfsm.Actorlinterface ...actorfsm.ActorTypelnterface
Stepperinterface I I
..Single ActorFsminterpreter
interface interface
...actorfsm.SensorTypelnterface ...CommandTypelnterface
+Mode
0 0
...kapps.actorfsm.StateMachine ...kapps.actorfsm.Transition
Y
d h.kapps.actorfsm.State
o———>
>—>

+ConcurrencyStatus

Fig. C.8: State machine model

A StateMachine consists of a number of State objects, which in turn con-
sist of a number of Transition objects. A state machine is specified as a con-
troller for a certain ActorTypelnterface implementation. An actor type de-
fines the types of sensors (SensorTypelnterface) and the types of commands
(CommandTypelnterface) of an Actorlnterface object of this actor type.

For each state, the sensors relevant to it are specified. For each transition,
the input values for these sensors are specified, as well as a list of commands.
When the state machine interpreter tries to find a transition from the current
state, these specified input values are compared with the actual sensor values
of the actor. The following listing shows how the inputMatch method of the
Transition class compares these values.

boolean inputMatch(boolean[] sensorInput,

89

SingleActorFsmInterpreter.Mode mode) {

for (int i = 0; i < sensorInput.length; i++) {
if (this.sensorInput([i] != SENSOR_NOTUSED) {
int intSensorInput = sensorInput[i] 7 SENSOR_TRUE : SENSOR_FALSE;
if ((mode == SingleActorFsmInterpreter.Mode.AND) &&
(intSensorInput != this.sensorInput[i])) {
return false;
}
else if ((mode == SingleActorFsmInterpreter.Mode.OR) &&
(intSensorInput == this.sensorInput[i])) {
return true;
}
}
}

return (mode == SingleActorFsmInterpreter.Mode.AND) ;

}

The state machine interpreter SingleActorFsmlinterpreter can be run in two
modes. In AND mode, all sensor values must match the specified values, whereas
in OR mode, one match suffices. Kara and MultiKara run in AND mode;
TuringKara runs in OR mode.

The graphical state machine diagram editor is based on an editor by Reto
Lamprecht [HLO1]. The graphical transition table editor was modelled after
an idea used in a similar editor by Thomas Suter [Sut0Ol]. The drag&drop
mechanism used throughout the environments is also an extension of his work.

World Model

A central data structure in all environments is the representation of the world.
All environments use the same basic world model: a two-dimensional container
of world objects. The difference between the environments is the types of objects
the world can contain. Figure C.9 shows the world model related interfaces and
classes.

...kapps.world.World ...kapps.world.WorldField interface
...WorldObjectinterface

0.*

interface
..world.WorldListener

+Adapter

Fig. C.9: World data model

Class World represents a two-dimensional array of WorldField objects. A
world square contains a stack of WorldObjectInterface objects. This interface
defines the semantics of a world object. For example, method canCombineWith
(WorldObjectlInterface other) queries a world object whether it can be on the

90

same world square stack as the specified other object. Implementations of this
interface are environment-dependent and therefore not part of the world model
package, but part of the environment-specific packages.

C.2 Putting it All Together: The ide Packages

The above discussion showed parts common to many or all Kara environments,
like the editor and interpreter abstraction and the abstract world editor. The
following sections outline the packages which contain the actual “integrated
development environments” for the Kara and MultiKara environment; the re-
spective packages for TuringKara and JavaKara are comparable in structure.

The Kara “Integrated Development Environment”

The karaide package puts together all the pieces needed to create the Kara
environment. It adds classes to customize some of the abstractions so that they
can be used in the context of the Kara environment. Figure C.10 shows some
of the data model classes of this package.

- interface interface
WorldObjectinterface ...actorfsm.Actorinterface ...actorfsm.ActorTypelnterface
...world.WorldObject
| |
| |
|
WorldObject WorldObject WorldObject ...KaraActor ...KaraActorType
-.EMPTY -.TREE ..karaide.Kara
WorldObject WorldObject
..LEAF ..MUSHROOM
0.*
WorldEditorFacadelnterface InterpreterFacadelnterface
...KaraWorldEditor Facade < ..karaide.KaralnterpreterFacade

ProgramEditorFacadelnterface
— — —| ...KaraProgramEditor Facade

Fig. C.10: Package karaide structure

The classes EMPTY, LEAF, TREE, MUSHROOM, Kara extend the World-
Object class, which is an abstract implementation of the WorldObjectInterface.
Instances of these classes are used as prototypes for the world editor. The
KaraActor class implements the Actorlnterface and is basically a realization
of the Adapter design pattern. Such an adapter is needed because the state
machine editor package is completely independent of Kara and its world.

91

The three facade classes implement the interfaces of the application facades,
creating all objects needed by the Kara environment and hooking them up when
the application starts.

The MultiKara “Integrated Development Environment”

The classes of the multikaraide package extend the classes of the karaide package
and add some new classes. Figure C.10 shows the classes from both packages
to illustrate the relationship between them.

WorldObjectinterface interface interface

..educeth.kapps.world.WorldObject ..Actorinterface ..ActorTypelnterface
| |
| |
| |
..MEETINGROOMFIELQ ..STREET ..karaide.Kara ..karaide.KaraActor ...KaraActorType
0.*
L ~MultiKaraActorType
..MONITORFIELD ..multikaraide.MultiKara
WorldEditorFacadelnterface InterpreterFacadeinterface
...KaraWorldEditor Facade A —— karaide.KaralnterpreterFacade
ProgramEditorFacadelnterface
l————| - g itor Facade
..MultiKaraWorldEditor Facade ..MultiKaraProgramEditor Facade ..MultiKaralnterpreterFacade

Fig. C.11: Package multikaraide structure

MultiKara adds three new types of world objects to the Kara environment:
STREET, MONITORFIELD, MEETINGROOMFIELD. Class MultiKara extends
class Kara; its move command makes sure the square in front can be entered with
respect to a possible street sign on that square. And while both environments
use the same actor implementation, KaraActor, MultiKara has a different actor
type, MultiKaraActorType. This actor type is capable of dynamically adding
sensors to itself, which is a feature that the KaraActorType does not have.

The three facade classes extend their counterparts of the karaide package,
redefining some creator functions to create certain objects as instances of the
classes of the multikaraide package.

92

C.3 Implementation Issues

The Kara environments are a software project of respectable size and a certain
complexity, in particular since the project is not a single application, but rather
a framework for a whole family of applications. Special care was taken on the
implementation level to achieve reliable and maintainable code. The following
sections outline some of the techniques applied during development.

Design by Contract

Design by Contract was introduced by Bertrand Meyer and is explained in
detail in Object Oriented Software Construction [Mey97]. The idea is “viewing
the relationship between a class and its clients as a formal agreement, expressing
each party’s rights and obligations”. Assertions express pre- and postconditions
for methods as well as invariants for classes. The goal is to make software
more reliable by providing a conceptual tool which can be used at all stages of
development: analysis, design, implementation, and documentation.

The Java language does not have built-in facilities for design by contract.
There exist a number of tools to add such facilities. iContract by Reto Kramer
is non-commercial software [Kra98]. The assertions of iContract are written as
expressions which are a superset of Java, compatible with a subset of the latest
UML Object Constraint Language. Assertions are specified using the JavaDoc
code documentation mechanism. For example, the following listing shows the
assertions on a method removeltem of RowlInterface, where a row is a container of
items. The precondition states that the item to be removed must be an element
of the row. The postconditions state that the item will not be found in the row
after removal, and that the size of the row will have decreased by one.

/**
Remove <code>item</code>.

Qpost 'has(item)
@post size()@pre - 1 == size()
*/

void removeltem(ItemInterface item);

*
*
* @pre has(item)
*
*

An iContract pre-compiler translates the assertions into instrumented Java
source code. Compiling this code yields an instrumented executable. One draw-
back of the pre-compiler approach is that it is hard to use a pre-compiler with-
out full integration into the development environment. Markus Bréndle wrote
a plug-in for Borland’s JBuilder, the environment used for developing Kara.
The plug-in integrates into the environment and makes it easy to compile and
execute with the assertions enabled.

Test Cases

Test cases are an important development technique in any programming project
of non-trivial size. Even though this is not a new idea, the importance of test
cases was proclaimed anew in the recent past by Beck’s Fxtreme Programming
approach to project development and management [Bec99]. In particular, this
approach emphasizes so called “unit tests”, typically defined as a white-box test

93

that is concerned with a small part of implementation-oriented functionality. A
collection of unit tests is assembled into test suites, where test suites can also
contain test suites. This hierarchical nesting of test suites makes it possible to
have test suites on different levels of an application, and to have one top level
test suite which runs all test cases of the application.

In the development of the Kara software, we used the JUnit test framework
by Beck and Gamma to implement test cases [BG02]. The basic idea is to
make sure that if we change something, everything still works. For example,
we want to make sure that all example programs execute without causing an
exception. The following listing shows a code fragment which executes programs
on a number of test worlds. The programs and worlds are chosen in such a way
that the execution should terminate and succeed without causing exceptions.

while (programs.hasMoreElements()) {
String programName = (String)programs.nextElement();
String[] worldNames = (String[])testCases.get(programName) ;

InputStream program = getClass().getResourceAsStream(programName) ;
programEditor.load(program) ;
for (int i = 0; i < worldNames.length; i++) {
InputStream world = getClass().getResourceAsStream(worldNames[i]);
worldEditor.load(world);

interpreter.play();
synchronized (interpreter) {
interpreter.wait();
}
¥
}

We implemented test cases on a number of different levels. There are test
cases for testing individual methods of a class, for testing individual classes, for
testing the collaboration of multiple classes, and for testing whole environments.

Implementation Principles

Two major principles of the designing class interfaces from [Mey97] were ob-
served in the development of the Kara software:

Command-Query Separation. The idea is to view an object as a ma-
chine. A machine has a publicly visible interface and a private, internal
state. The interface defines commands as methods which change the in-
ternal state of the object, but do not return a value. The interface also
defines queries as methods which return information, but do not change
the observable state of the object. This basically guarantees that “asking
a question does not change the answer”.

Operands and Options Principle. An operand argument to a method
is an object on which the method will operate. An option argument spec-
ifies how the method should operate on the operands. For example, in
a method call like console.printReal (5.4, “#+#.#+#"), 5.4 is the operand,
and the string represents an option. The Operands and Options Princi-
ple states that the arguments of a method should only be operands, but
not options. Options should be set using setter methods. The reason is

94

that operands are more stable during the evolution of software, whereas
options are likely to evolve.

Efficiency and Memory

Even though interpretation of Java programs has become much faster with its
newer versions, and even though the graphical user interface libraries have been
optimized, the rendering of graphical components is still not very fast. Another
problem is that Swing, the graphical user interface library of Java, has problems
with memory leaks.

We therefore optimized the rendering of our own graphical components as
much as possible, identifying performance bottlenecks with Borland’s Opti-
mizelt [Bor02]. For example, we achieved a massive speedup of the rendering
of the world view. At first, we used the standard Java graphics mechanism for
scaling the world view at any arbitrary zoom factor. This made the width of a
square a real number and rendering very expensive. We decided that only scale
factors could be used such that the width of a square view is an integer. We
also implemented the zooming ourselves to speed up things even more.

The problem of memory leaks has two issues. First, long-lived objects hold
references to short-lived objects, which prevents the garbage collector from free-
ing the latter. A mechanism to solve this problem was presented by Reichert in
[Rei99]. The basic idea is to use so called weak references from long-lived ob-
jects to short-lived objects, and not the usual direct, strong references. Second,
some memory leaks are caused by bugs in the Swing library. They can usually
be avoided if creation of Swing objects is avoided as much as possible. We
therefore use pools to which Swing objects are added when they are no longer
needed. When such an object needs to be created, the creator method first
checks the pool to see if an object can be reused. A new object is created only
if this is not the case. This keeps the number of newly created Swing objects to
a minimum.

File Format for Input and Output

The file format for worlds and programs is XML. To create the XML represen-
tations the Java™ Architecture for XML Binding (JAXB) is used [Sun02]. The
architecture provides an API to automate the mapping between XML docu-
ments and Java objects. DTDs (document type definitions) are used to define
the XML structure of the files to be written. JAXB implicitly validates the
XML structure according to the specified DTD. This makes it extremely easy
to assure that a created XML structure is valid and that it can later be used to
recreate the Java objects.

DTD for worlds

<?xml version="1.0" encoding="UTF-8"7>

<!ELEMENT

XmlWorld (XmlWallPoints, XmlObstaclePoints,

XmlPaintedfieldPoints, XmlKaralist,
XmlStreetList, XmlMeetingroomList*, XmlMonitorListx*)>

<IATTLIST
<IATTLIST
<IATTLIST

<!ELEMENT
<IELEMENT
<!ELEMENT

<!ELEMENT
<IATTLIST
<IATTLIST
<IATTLIST

<!ELEMENT
<IATTLIST
<IATTLIST
<IATTLIST

<!ELEMENT
<IATTLIST
<IATTLIST
<IATTLIST
<IATTLIST

<IELEMENT
<!ELEMENT
<IATTLIST
<IATTLIST
<IATTLIST

<!ELEMENT
<!ELEMENT
<IATTLIST
<IATTLIST

<!ELEMENT
<!ELEMENT
<VATTLIST
<IATTLIST

XmlWorld sizex CDATA #REQUIRED>
XmlWorld sizey CDATA #REQUIRED>
XmlWorld version CDATA #REQUIRED>

XmlWallPoints (XmlPointx*)>
XmlObstaclePoints (XmlPoint*)>
XmlPaintedfieldPoints (XmlPointx*)>

XmlPoint EMPTY>

XmlPoint x CDATA #REQUIRED>
XmlPoint y CDATA #REQUIRED>
XmlPoint type CDATA #IMPLIED>

XmlKaraList (XmlKara*)>

XmlKaralList startingOrder CDATA #IMPLIED>
XmlKaralist priorities CDATA #IMPLIED>
XmlKaralist parkingOrder CDATA #IMPLIED>

XmlKara EMPTY>

XmlKara x CDATA #REQUIRED>
XmlKara y CDATA #REQUIRED>
XmlKara name CDATA #REQUIRED>
XmlKara direction CDATA #REQUIRED>

XmlStreetList (XmlStreet*)>
XmlStreet EMPTY>

XmlStreet x CDATA #REQUIRED>
XmlStreet y CDATA #REQUIRED>
XmlStreet type CDATA #REQUIRED>

XmlMeetingroomList (XmlMeetingroomx)>
XmlMeetingroom EMPTY>

XmlMeetingroom x CDATA #REQUIRED>
XmlMeetingroom y CDATA #REQUIRED>

XmlMonitorList (XmlMonitorx)>
XmlMonitor EMPTY>

XmlMonitor x CDATA #REQUIRED>
XmlMonitor y CDATA #REQUIRED>

95

96

DTD for programs

<?7xml version="1.0" encoding="UTF-8"7>

<!ELEMENT XmlStateMachines
(XmlStateMachine*,XmlSensorDefinition*)>
<ITATTLIST XmlStateMachines version CDATA #REQUIRED>

<VELEMENT XmlStateMachine (XmlState*,XmlTransition*)>
<IATTLIST XmlStateMachine startState CDATA #IMPLIED>
<IATTLIST XmlStateMachine actor CDATA #REQUIRED>

<!ELEMENT XmlState (XmlDescription, XmlSensors)>
<!ATTLIST XmlState name CDATA #REQUIRED>

<!ATTLIST XmlState finalstate CDATA #IMPLIED>

<IATTLIST XmlState x CDATA #REQUIRED>

<IATTLIST XmlState y CDATA #REQUIRED>

<IATTLIST XmlState barrierstate CDATA #IMPLIED>
<VTATTLIST XmlState criticalsectionstate CDATA #IMPLIED>

<!ELEMENT XmlDescription (#PCDATA)>

<!ELEMENT XmlSensorDefinition EMPTY>

<TATTLIST XmlSensorDefinition identifier CDATA #IMPLIED>
<IATTLIST XmlSensorDefinition name CDATA #REQUIRED>

<IATTLIST XmlSensorDefinition description CDATA #IMPLIED>
<VATTLIST XmlSensorDefinition parameterString CDATA #IMPLIED>

<VELEMENT XmlSensors (XmlSensor*)>

<!ELEMENT XmlSensor EMPTY>
<!ATTLIST XmlSensor name CDATA #REQUIRED>

<!ELEMENT XmlTransition (XmlSensorValues, XmlCommands)>
<!ATTLIST XmlTransition from CDATA #REQUIRED>
<!ATTLIST XmlTransition to CDATA #REQUIRED>

<!ELEMENT XmlSensorValues (XmlSensorValuex*)>
<!ELEMENT XmlSensorValue EMPTY>

<IATTLIST XmlSensorValue name CDATA #REQUIRED>
<!ATTLIST XmlSensorValue value CDATA #REQUIRED>

<!ELEMENT XmlCommands (XmlCommand*)>
<!ELEMENT XmlCommand EMPTY>
<!ATTLIST XmlCommand name CDATA #REQUIRED>

Bibliography

[ACHT68] Atchison, W. F., Conte, S. D., Hamblen, J. W., Hull, T. E., Keenan,

[AI02]

[BA9O]

[BAKOY]

[BCY6]

T. A., Kehl, W. B., McCluskey, E. J., Navarro, S. O., Rheinboldt,
W. C., Schweppe, E. J., Viavant, W., and David M. Young, J. Cur-
riculum 68: Recommendations for academic programs in computer
science: a report of the ACM curriculum committee on computer
science. Communications of the ACM, 11(3):151-197, 1968.

ACM, and IEEE. Curriculum 2001. http://www.computer.org/
education/cc2001/, October 2002.

Ben-Ari, M. Principles of Concurrent and Distributed Programming.
Prentice Hall, Essex, England, 1990.

Ben-Ari, M., and Kolikant, Y. B.-D. Thinking parallel: the pro-
cess of learning concurrency. In Proceedings of the 4th annual
SIGCSE/SIGCUE on Innovation and technology in computer science
education, pages 13-16. ACM Press, 1999.

Bynum, B., and Camp, T. After you, Alfonse: a mutual exclusion
toolkit. In Proceedings of the twenty-seventh SIGCSE technical sym-
posium on Computer science education, pages 170-174. ACM Press,
1996.

[BCH'97] Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., and

[BDSS]

[BEOO]

[Bec99]

[Ber97]

[Ber02]

Miller, P. Mini-languages: A way to learn programming principles.
Education and Information Technologies, 2(1):65-83, 1997.

Burns, A., and Davies, G. Pascal-FC: A language for teaching con-
current programming. ACM SIGPLAN Notices, 23(1):58-66, 1988.

Barwise, J., and Etchemendy, J. Language, Proof and Logic.
CSLI Publications, 2000. http://www-csli.stanford.edu/hp/ (Octo-
ber 2002).

Beck, K. Extreme Programming Explained: Embracing Change.
Addison-Wesley, 1999.

Bergin, J. Karel++: A Gentle Introduction to the Art of Object-
Oriented Programming. Wiley, New York, 1997.

Bergin, J. Karel++ for Java. http://csis.pace.edu/ bergin/
KarelJava/, October 2002.

97

98

[BG02]

Beck, K., and Gamma, E. JUnit Testing Framework. http://www.

junit.org/, October 2002.

[BKMT94] Brusilovsky, P., Kouchnirenko, A., Miller, P., and Tomek, I. Teach-

[Blo56]

[Bol99)]

[Bor02]

[Brag6]

[Bra02]

[Bro91]

[Bro96]

[Bru60]

[BSO1]

[Bun02]

[CMS9]

ing programming to novices: A review of approaches and tools. In Ed-
ucational Multimedia and Hypermedia. Proceedings of ED-MEDIA’94
— World Conference on Educational Multimedia and Hypermedia,
pages 103—-110, 1994.

Bloom, B. Taxonomy of Educational Objectives. Longmans, London,
1956.

Boles, D. Programmieren spielend gelernt. Mit dem Java-Hamster-
Modell. Teubner, 1999.

Borland Inc. Optimizelt. http://www.borland.com/optimizeit/, Oc-
tober 2002.

Braitenberg, V. Vehicles and Ezperiments in Synthetic Psychology.
M.LT. Press, 1986.

Braendle, M. Multikara. Diploma thesis, Dept. of Computer Science,
ETH Ziirich, 2002.

Brooks, R. A. Intelligence without representation. Artificial Intelli-
gence, 47:139-159, January 1991.

Brooks, F. P. The computer scientist as toolsmith II. Communica-
tions of the ACM, 39(3):61-68, 1996.

Bruner, J. S. The Process of Education. Harvard University Press,
1960.

Buck, D., and Stucki, D. J. JKarelRobot: A case study in supporting
levels of cognitive development in the computer science curriculum.
In Proceeding of the Thirty-second SIGCSE Technical Symposium on
Computer Science Education, volume 33, pages 16-20, February 21—
25 2001.

Bundeswettbewerb Informatik. Programming problems of the 20"
Bundeswettbewerb Informatik 2001/2002. http://www.bwinf.de/
download/201beispiellsg.pdf, October 2002.

Chandhok, R. P.; and Miller, P. L. The design and implementation
of the Pascal GENIE. In Proceedings of the seventeenth annual ACM
conference on Computer science: Computing trends in the 1990’s,
pages 374-379, 1989.

[dBOM99] du Boulay, B., O’Shea, T., and Monk, J. The black box inside the

glass box: Presenting computing concepts to novices. International

Journal of Human-Computer Studies, 51(2):265-277, 1999.

[DCGT89] Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A.,

Turner, A. J., and Young, P. R. Computing as a discipline. Commu-
nications of the ACM, 32(1):9-23, 1989.

[DCPOO]

[Den89]

[Dew89]

[Dij86]

[Dij89)]

[FKO02]

[Gal9sg]

99

Dann, W., Cooper, S., and Pausch, R. Making the connec-
tion: programming with animated small world. In 5th an-
nual SIGCSE/SIGCUE conference on Innovation and technology
in computer science education, pages 41-44, 2000. See also
http://www.alice.org/ (October 2002).

Denning, P. J. A debate on teaching computing science. Communi-
cations of the ACM, 32(12):1397-1414, 1989.

Dewdney, A. K. The Turing Omnibus: 61 Excursions in Computer
Science. Computer Science Press, 1989.

Dijkstra, E. W. On a cultural gap. The Mathematical Intelligencer,
8(1):48-52, 1986.

Dijkstra, E. W. On the cruelty of really teaching computer sci-
ence. Communications of the ACM, 32(12):1398-1404, December
1989. Published within [Den89].

Freiberger, U., and Krsko, O. The Robot Karol. http://www.schule.
bayern.de/karol/, October 2002.

Gale, D. Tracking the automatic ant and other mathematical explo-
rations. A collection of mathematical entertainment columns from the
Mathematical Intelligencer. Springer, New York, 1998.

[GHJV86] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Pat-

(GS02]

[Har94]

[Har98]

[HBBO1]

[HLO1]

[HN02]

[HNRO1]

terns: Elements of reusable object-oriented software. Addison—Wesley,

1986.

Guzdial, M., and Soloway, E. Teaching the nintendo generation to
program. Communications of the ACM, 45(4):17-21, 2002.

Hartmanis, J. Turing award lecture on computational complexity
and the nature of computer science. Communications of the ACM,
37(10):37-43, 1994.

Hartley, S. J. “Alfonse, your Java is ready!”. In Proceedings of the
twenty-ninth SIGCSE technical symposium on Computer science ed-
ucation, pages 247-251. ACM Press, 1998.

Hassenzahl, M., Beu, A., and Burmester, M. Engineering joy. IEEFE
Software, 18(1):70-76, January/February 2001.

Hiéfeli, C., and Lamprecht, R. Interactive learning components for the
study of finite automata. Diploma thesis, Dept. of Computer Science,
ETH Ziirich, 2001.

Hartmann, W., and Nievergelt, J. Informatik und Bildung zwischen
Wandel und Bestandigkeit. Informatik-Spektrum, 25(6):465-476, De-
cember 2002.

Hartmann, W., Nievergelt, J., and Reichert, R. Kara, finite state ma-
chines, and the case for programming as part of general education.
In Symposia on Human-Centric Computing Languages and Environ-
ments, pages 135-141. IEEE, September 2001.

100

[Hvo92]

[HWO1]

[IBMO2]

[Kah96)]

[Knu74]

[KRO1]

[Kra9g]

[Kur78]

[Lea99]

[MBY0]

[Mey97]

Hvorecky, J. Karel the Robot for PC. In Proceedings of East-West
Conference on Emerging Computer Technologies in Education, pages
157-160, April 1992.

Hoffman, D. M., and Weiss, D. M. Software Fundamentals: Collected
Papers by David L. Parnas. Addison Wesley, 2001.

IBM. RoboCode. http://robocode.alphaworks.ibm.com/, October
2002.

Kahn, K. ToonTalk™ — an animated programming environment for
children. Journal of Visual Languages and Computing, 7(2):197-217,
1996. See also http://www.toontalk.com/ (October 2002).

Knuth, D. E. Computer science and its relation to mathematics. The
American Mathematical Monthly, 81(4):323-343, April 1974.

Klling, M., and Rosenberg, J. Guidelines for teaching object ori-
entation with Java. In Proceedings of the 6th annual conference on
Innovation and technology in computer science education, pages 33—
36, 2001. See also http://www.bluej.org/ (October 2002).

Kramer, R. iContract—the Java Designs by Contract tool. In Proceed-
ings Technology of Object-Oriented Languages and Systems, TOOLS
26, Santa Barbara/CA, USA, pages 295-307. IEEE Computer So-
ciety Press, Los Alamitos, 1998. See also http://www.reliable-
systems.com/ (October 2002).

Kurtz, T. E. Basic. In The first ACM SIGPLAN conference on
History of programming languages, pages 103-118, 1978.

Lea, D. Concurrent Programming in Java: Design principles and
Patterns. The Java Series. Addison Wesley, 2nd edition, 1999.

Marxen, H., and Buntrock, J. Attacking the busy beaver 5. Bulletin
of the EATCS, (40):271-251, February 1990.

Meyer, B. Object-Oriented Software Construction. Prentice Hall
PTR, second edition, 1997.

[MPMV94] Miller, P., Pane, J., Meter, G., and Vorthmann, S. R. Evolution of

[Mue77]

[Mue02]

[Nie95]

novice programming environments: The structure editors of Carnegie
Mellon University. Interactive Learning Environments, 4(2):140-158,
1994.

Mueller, H. A one-symbol printing automaton escaping from every
labyrinth. Computing, 19:95-110, 1977.

Mueller, H. Parkettierung eines Rechtecks mit zwei Karas. Private
Communication, June 2002.

Nievergelt, J. Welchen Wert haben theoretische Grundlagen fiir
die Berufspraxis? Gedanken zum Fundament des Informatik-Turms.
Informatik-Spektrum, 18(6):342-344, December 1995.

[Nie99)

[OEC02]

[OMGO02]

[Pap80]

[Par96]

[Pat95]

[Pat97]

[Ras00]

[Rei99]

[Rei02]

[Res90]

[RH02]

[RNHO00]

[RNHO1]

[Sch02]

101

Nievergelt, J. “Roboter programmieren” — ein Kinderspiel. Bewegt
sich auch etwas in der Allgemeinbildung? Informatik-Spektrum,
22(5), October 1999.

OECD. PISA: The OECD Programme for International Student As-
sessment. http://www.pisa.oecd.org/, October 2002.

OMG. UML Standard. http://www.omg.org/uml/, October 2002.

Papert, S. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, New York, NY, 1980.

Parnas, D. L. Teaching and Learning Formal Methods (editors C. N.
Dean and M. G. Hinchey), chapter Teaching Programming as if it
were Engineering, pages 43-55. Academic Press, 1996. Reprinted in
[HWO01].

Pattis, R. E. Karel the Robot — A Gentle Introduction to the Art of
Programming. Wiley, New York, second edition, 1995.

Pattis, R. E. Teaching OOP in C++ using an artificial life framework.
ACM SIGCSE Bulletin, 29(1):39-43, 1997.

Raskin, J. Humane Interface: New Directions for Designing Interac-
tive Systems. Addison-Wesley Publishing, 2000.

Reichert, R. Interact with the garbage collector to avoid memory
leaks. JavaWorld (hitp://www.jevaworld.com/), 1999.

Reinfelds, J. Teaching of programming with a programmer’s theory of
programming. In IFIP Working Group 3.2 Working Conference ”In-
formatics Curricula, Teaching Methods, and Best Practice”. Kluwer
Academic Publishers, July 2002.

Resnick, M. Multilogo: A study of children and concurrent program-
ming. Interactive Learning Environments, 1(3):153-170, 1990.

Roy, P. V., and Haridi, S. Teaching programming broadly and deeply:
The kernel language approach. In IFIP Working Group 3.2 Work-
ing Conference ”Informatics Curricula, Teaching Methods, and Best
Practice”. Kluwer Academic Publishers, July 2002.

Reichert, R., Nievergelt, J., and Hartmann, W. Ein spielerischer Ein-
stieg in die Programmierung mit Java. Informatik-Spektrum, 23(5),
October 2000.

Reichert, R., Nievergelt, J., and Hartmann, W. Programming in
schools — why, and how? In Pellegrini, C., and Jacquesson, A., edi-
tors, Enseigner l'informatique, pages 143-152. Georg Editeur Verlag,
2001.

Schlatter, T. Cora — Concurrent Kara. Diploma thesis, Dept. of
Computer Science, ETH Ziirich, 2002.

102

[SCS94]

Smith, D. C.,; Cypher, A., and Spohrer, J. KidSim: programming
agents without a programming language. Communications of the
ACM, 37(7):54-67, July 1994. See also http://www.stagecast.com/
(October 2002).

[SDBP98] Stasko, J., Domingue, J., Brown, M. H., and Price, B. A., editors.

[Sun02]

[Sut01]

[Tid02]

[Tuc91]

[Tur37]

[Wir71]

[Wir73]

Software Visualization: Programming as a Multimedia Experience.
M.I.T. Press, February 1998.

Sun Inc. JAXB: Java™ Architecture for XML Binding. http://java.
sun.com/xml/jaxb/, October 2002.

Suter, T. Interactive learning components for the study of context
free grammers and languages. Diploma thesis, Dept. of Computer
Science, ETH Ziirich, 2001.

Tidwell, J. A Pattern Language for Human-Computer Interface De-
sign. http://www.mit.edu/"jtidwell/common_ground.html, October
2002.

Tucker, A. B. Computing curricula 1991. Communications of the
ACM, 34(6):68-84, 1991.

Turing, A. M. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical So-
ciety, Series 2(42):230-265, 1936-1937.

Wirth, N. The Programming Language Pascal. Acta Informatica,
1:35-63, 1971.

Wirth, N. Systematic Programming: An Introduction. Prentice-Hall,
1973.

Curriculum Vitae

Education
1986 — 1993 Gymnasium in Sarnen, OW
1993 Matura, Type B
1993 — 1999 Studies of Computer Science, ETH Zurich
1999 Master’s degree in Computer Science (Dipl. Inf. Ing. ETH)
1997 — 1999 Studies of education sciences, ETH Zurich
1999 Didaktischer Ausweis ETH in Computer Science
2000 — 2003 Ph. D. studies in computer science, ETH Zurich
Advisor: Prof. Dr. Jiirg Nievergelt
Co-referees: Prof. Dr. Horst Miiller, Dr. Werner Hartmann
Awards
2000 Fritz-Kutter award of ETH Zurich for master thesis
2002 European Academic Software Award for Ph. D. project 'KaraToJava'

