
Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

Kara, finite state machines,

and the case for programming as part of general education

W. Hartmann, J. Nievergelt, R. Reichert
Department of Computer Science, ETH Zürich, Switzerland

{hartmann, nievergelt, reichert}@inf.ethz.ch

Abstract

As a major evolutionary step in computer technology,
users have come to rely on ready-made application
software, rather than writing their own programs. If
computer users no longer program, does it follow that the
art of programming should only be taught to computing
professionals? We argue the case for programming as a
component of general education. Not because of any
direct utilitarian benefit, but in order to gain a personal
experience as to what it means, and what it takes, to
specify processes that evolve over time. An analogy to
mathematics education shows that schools teach the
concept of „proof“, although in daily life people use
mathematical formulas without knowledge of their proof.

Programming practiced as an educational exercise,
free from utilitarian constraints, is best learned in a toy
environment, designed to illustrate selected concepts in
the simplest possible setting. As an example, we present
the programming system Kara based on the concept of
finite state machines.

1. General education

in an ever-changing world

The rapid evolution of the information and
communication technology that permeates modern society
affects our expectations of education at all levels. Top
priority is assigned to content that is practically oriented,
relevant to today's job world, immediately useful. This
emphasis on practicality is not new. Folklore identifies
„the 3 R's: reading, 'riting, 'rithmetic“ as the main task of
elementary school. These skills, limited to the privileged
few throughout most of recorded history, became a
necessary part of general education as a consequence of
the industrial age.

But in addition to tangible, sellable skills, education
has always included topics about which most adults later
say „I've never used it since I left school“. This category
includes the majority of the topics any one student
endured, namely most of those outside the profession
chosen later. Is it a waste of time to study disciplines of
no direct use? Perhaps yes, perhaps not, it all depends on

the topic and on whom you ask. But generally we accept
the necessity of exposure to topics not directly related to
any material benefit. Young children, champions at
learning, are interested in just about anything new,
without any thought of whether they might ever use it.
The value of learning cannot be measured in dollars and
cents – and if we try, we end up short-changing ourselves.

The fashionable clamor for „relevant education“ is all
too easily misinterpreted as training focused mainly on
skills of immediate use. This emphasis leads to mastery of
low-level skills, such as „how to do it“, rather than to
understanding concepts and principles, of „why and how
it works“. In a rapidly changing field such as information
and communication technology, mastery of today's
release may not be of much value when a new system is
installed a few years later. The precious school years must
be dedicated primarily to knowledge of long-lasting
value, to what is known as general education.

2. „The 4 R's:

reading, 'riting, 'rithmetic, 'rogramming“

As a major technical achievement of the past two
decades, computer users no longer need to write programs
to solve their problems. For just about every conceivable
application, ready-made software packages provide tools
much more powerful than what almost any user could
write. If computer users no longer program, does it follow
that the art of programming should only be taught to
computing professionals? The plausibility of this
argument has led many high schools and colleges to
replace the introductory programming courses widely
taught in the 70s and 80s by skill courses on how to use
application packages. Text processing, spreadsheet
calculations, web surfing are certainly essential job skills
today; they deserve a brief introduction, whereafter any
user can reach any desired skill level on his own. But the
lion's share of the teacher's and the students' attention
should be devoted to fundamental concepts of timeless
validity. What are some of these concepts?

Modern society relegates an ever-growing number of
every-day tasks to machines. These machines act as
controllers that initiate actions based on their current state
and on received inputs. The number of possible

Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

behaviors, of sequences of actions triggered by different
environmental conditions, is usually so huge as to be
impossible to enumerate. Yet, we aim to be sure that each
and every possible behavior, of which only a tiny fraction
will ever be played out, is „correct“ in some precise
sense. The way to do that is to write a specification that
captures the practical infinity of processes that may
evolve over time, depending on received inputs. A
program is such a formal specification, and the concept of
„program“ is surely among the most fundamental
concepts required to understand computers. We argue the
case for programming as a component of general
education. Not because of any direct utilitarian benefit,
but in order to gain a personal experience as to what it
means, and what it takes, to specify processes that evolve
over time.

To further support our argument for programming as
part of general education, consider an analogy with
mathematics teaching. Many professions in science and
engineering require the use of mathematical results;
scientists and engineers are users of mathematics in the
same sense that many people are users of computers.
Thus, one might argue that scientists and engineers only
need to learn how mathematical theorems are applied;
that the concept of „proof“ is only relevant to professional
mathematicians. But centuries of experience show that
any math instruction at the college level and beyond
involves significant time devoted to proofs, even though
most students are unlikely to ever prove a theorem
outside their math courses. The reason is plain: we do not
trust a „mathematics user“ to apply formulas or
mathematical software in a reliable and responsible
manner if he has never understood the concept of „proof“.
Applying mathematical results is a matter of
understanding, not just of pattern matching. Similarly,
applying computers should be a matter of understanding,
not just of pushing the right keys.

The analogy between the role of programming as an
introduction to computer science on the one hand, and the
concept of proof in an introduction to mathematics on the
other, is highlighted by analogous trends and debates in
recent times. At the same time as programming was
deleted from many curricula in grades K9-12, the concept
of proof came under attack by some curriculum reform
movements. But recently the importance of proofs in
mathematics teaching is being emphasized again. In April
2000, the US National Council of Teachers of
Mathematics (NCTM) published new Principles and
Standards for School Mathematics (PSSM). [Ferrini 00]
is a good overview of PSSM. In the chapter “Reasoning
and Proof” of PSSM we find:

“Instructional programs from prekindergarten through
grade 12 should enable students to
• recognize reasoning and proof as fundamental aspects

of mathematics;

• make and investigate mathematical conjectures;
develop and evaluate mathematical arguments and
proofs;

• select and use various types of reasoning and methods
of proof.

By the end of secondary school, students should be able
to understand and produce mathematical proofs,
arguments consisting of logically rigorous deductions of
conclusions from hypotheses and should appreciate the
value of such arguments.”

In analogy with proofs leading to insight into
mathematical reasoning, programming develops insight
into the way computers work.

But how to introduce students to the fundamental
concepts of programming? There is no need to introduce
beginners to the complexities inherent in professional
programming languages and environments. Programming
practiced as an educational exercise, free from utilitarian
constraints, is best learned in a toy environment, designed
to illustrate selected concepts in the simplest possible
setting. The fundamental concepts of programming may
be intellectually demanding, but they are not complex in
the sense of requiring mastery of lots of details.

We present a learning environment, designed to be as
simple as possible, that highlights a few important
programming concepts. The programming system Kara is
based on the concept of finite state machines and serves
to drive toy „robots“ around the floor or the screen.
Whereas the task of programming robot motion has been
used by many systems since LOGO, the combination with
finite state machines as a model of computation is new.
Finite state machines are the key to the simplicity of the
resulting system. They are well known from every-day
devices such as traffic lights or vending machines, which
makes it possible to explain to students the concept of
state machines in a concrete, “hands-on” way.

3. Kara, the programmable ladybug

Kara [Reichert, Nievergelt, Hartmann 00], [Reichert
01] is a programming environment that realizes the goal
of introducing programming by means of finite state
machines. The use of finite state machines also has a
practical, user-interface related advantage: a finite state
machine can be constructed easily in a purely graphical
manner. In a simplified version of „turtle geometry“
[Papert 80], and in the tradition of Karel, the robot [Pattis
81], Kara is a programmable ladybug living alone in a flat
world. Fig. 1 shows the main window with the grid world
and icons for commands to control Kara and to edit the
world.

Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

Fig 1: The world of Kara

In Kara’s world, there are only a few types of objects:

unmovable tree trunks, which completely occupy a
square; mushrooms which Kara can push around; and
cloverleaves, of which Kara can lay down or pick up any
number; and of course, Kara himself. Kara is placed on
either a free square or a square occupied by only a
cloverleaf, facing one of four possible directions. Sensors
inform Kara about its immediate surroundings:

 Is there a tree on the square in front of Kara?

 Is there a tree on the square to Kara’s right?

 Is there a tree on the square to Kara’s left?

 Is there a mushroom in front of Kara?

 Is there a cloverleaf underneath Kara?

Kara can execute a couple of primitive actions:

 Advance one square in the current direction.

 Turn right by 90°, on the current square.

 Turn left by 90°, on the current square.

 Put down a cloverleaf.

 Pick up a cloverleaf.

The world of Kara, and Kara himself, are intentionally

as simple as described above. We kept the number of
types of objects, and of sensors and commands, to a
minimum with which we could still pose challenging
tasks.

Using these sensors and commands, finite state
machines for Kara are specified in the visual program
editor shown in Fig. 2. The program shown makes Kara
follow a trail of cloverleaves such as the one in Fig. 1,
and eat them up.

Fig 2: Kara program editor

4. Instructive finite state programs

Finite state machines are suitable for controlling
processes that react to local conditions only. Indeed,
given an environment like that of Karel the robot or Kara,
it turns out that a program specified as a finite state
machine is often more concise than a program for the
same task written in a conventional programming
language.

Consider a wall of trees of arbitrary shape, with
arbitrary appendages, as shown in Fig. 3a. Kara must be
programmed to endlessly cycle around the perimeter of
the wall, hugging it with his right side. The following
finite state program, presented in the notation of the Kara
environment, solves the problem (Fig 4a, b).

Fig 3: a) A wall of trees and
b) the predicate „wall to the rear-right“

Kara starts in state Seek, not knowing anything about

its position, as expressed by the vacuous assertion
„precondition = true“. The function of this state is to
bring about the postcondition „wall to the rear-right“,

Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

illustrated in Fig.3b: There is a piece of wall to the right
of Kara, or diagonally to the rear-right, or both. As long
as the bug has not sensed any piece of wall (neither ahead
nor to the right), it moves forward. If it senses a wall,
either ahead or to the right, it positions itself so as to
fulfill the postcondition „wall to the rear-right“. The
„don’t care” notation „yes or no” serves as an
abbreviation.

Seek: precondition = true, postcond. = „wall to the rear-right“

Fig 4: a) State Seek of the
wall following program

Track: precond. = postcondition = „wall to the rear-right“

Fig 4: b) State Track of the
wall following program

The mathematically inclined reader may find it

instructive to prove the program correct by checking that
the state Track maintains the invariant „wall to the rear-
right“, and that, in each transition, Kara progresses in his
march along the wall. Here we merely point out how
several fundamental ideas of the theory of computation,
of algorithms and programs can be illustrated in a simple,
playful setting whose rules are quickly understood.

Fig.5 shows a cloverleaf pattern which represents the

integers mod 2 of a Pascal triangle, with its apex at the
top left corner of the grid.

It is remarkable that the four-state finite state machine
shown in Fig. 6 suffices to draw this intricate pattern. The
states 'carry0' and 'carry1' implement modulo 2 addition.
The state 'next row' drives the bug across the grid in raster
scan fashion.

Fig. 5 Clover leaves and empty squares
represent a Pascal triangle modulo 2.

Fig.6 State diagram of the Pascal triangle program.

Fig.7 shows the detailed specification of the state 'carry1'.
In this state, Kara already knows that the field to his rear-
right is occupied by a cloverleaf. And to that field, it has
to add the value of the current field. The bug consults its
two sensors „am I facing a tree trunk“ and „am I sitting
on a clover leaf“. The four possible answers to these two
binary questions trigger different sequences of actions,
followed by transitions to different next states. Consider
the first transition as an example. Kara is not facing a tree
trunk, meaning it has not yet reached the end of the
current row. And it is not sitting on a cloverleaf, meaning
it is reading a 0.

Fig.7 Specification of the state carry1.

Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

Since 1 + 0 = 1, Kara deposits a cloverleaf, thus writing
the result 1 of this mod 2 addition. Kara must write on the
correct square and must position itself properly for the
next bit addition. This requires the complicated dance
expressed by 7 motion commands surrounding the
“write” command.

5. Experience

Kara has been used for the past years in several
courses to teach the fundamentals of programming to
beginners, typically high school students who never had
any exposure to programming, and teachers with little
background in computing. The feedback we have
received from all these users is highly positive. Beginners
appreciate the fact that they succeed in solving non-trivial
problems after being coached for just a few hours. More
expert users are surprised to learn that the conceptually
simple structure of programming using finite state
machines raises fundamental questions of computer
science.

Our programming courses start with a one day
introduction to Kara, followed by a "real-world"
programming language (Java, Pascal). The feedback from
a survey of over a hundred high school students and over
a hundred teachers can be summarized as following:
• Not surprisingly, Kara was most motivating for those

students with the least prior experience in
programming.

• All students found Kara either “very motivating” or
“motivating” – no student was “indifferent” or found
Kara “demotivating” or “very demotivating”.

• Also, all students found the handling of Kara’s user-
interface either “very easy” or “easy” – no student was
“indifferent” or found the user-interface “hard” or
“very hard” to use.

The written comments of the students show that they
thought Kara had allowed them to focus on problem
solving, on the logic and the correctness of their
programs, without being distracted by the environment or
by the textual syntax of a “real-world” programming
language. They also liked the simplicity of the user-
interface, which reminded some of “early computer
games”.

Kara is used widely in Germany, Austria, and
Switzerland (originally, the material was only available in
German; now it is also available in English). To our
surprise, Kara is not only used at the high school level,
but also in K6-8 grade schools, and even in introductory
courses at universities.

The programming environment Kara is published on
the Web [Reichert 01], along with teaching materials: a
wide selection of exercises and their solutions, and slides
for introductory presentations. Our web server registers,
on average, over 11’000 requests per month, and the

programming environment is downloaded over 500 times
a month.

The major question Kara users raise is „how do we get
to real programming?“ In order to facilitate this transition,
the extended system JavaKara allows more advanced
users to program the ladybug in Java. JavaKara contains
templates of procedures that call the built-in Kara
operations, letting the user learn how to „program by
example“.

6. From Kara the bug to robots and Java

The architecture of the Kara software package is
designed to be flexible, with the goal that different
programming models might later be added, beyond the
finite state machines currently implemented. Therefore,
the „integrated development environment“ of Kara was
split into two parts, which are interconnected by a small,
clearly defined interface (Fig. 8):

Fig. 8 Software structure of Kara

• Kara and his world. This part defines the properties of
the world and the objects that can inhabit it, it defines
the commands which Kara understands, and his
sensors. From the outside, Kara can only be accessed
through a „robot“ interface which allows you to query
him about his commands and about his sensors. These
commands can of course be executed, and his sensors
can be queried for their current states. However, Kara
neither knows nor cares how he is being controlled
and programmed; no assumptions are made about what
and how the „outside“ might want to do with Kara.

• Program and interpreter. The program package defines
how Kara is programmed – or more precisely, how any
entity implementing the „robot“ interface can be
programmed. The interpreter is responsible for
executing the programs, controlling the entity through
the „robot“ interface. Neither the program model nor
the interpreter need to know anything about the entity
they are controlling except for the information
obtained through the interface.

Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

This separation of concerns makes it possible to construct
a whole family of Kara applications. The world model
and the programming model could be replaced by other
implementations without having to reprogram the other
part. The „standard“ implementation of the world model
is Kara itself, and the standard implementation of the
programming model are finite automata. We exploited the
separation of the two parts when we created LegoKara
and JavaKara.

Fig. 8 Kara as a Lego Mindstorms robot

LegoKara (Fig. 8) is an implementation of Kara as a

Lego Mindstorms robot. A detailed manual explains how
to build a LegoKara, which differs slightly from the
virtual Kara. For simplicity’s sake, the robot lacks the
ability to lay down or pick up cloverleaves, and it does
not have the ability to distinguish walls from objects that
could be pushed around (mushrooms in Kara’s world).
LegoKara is programmed using finite automata, in the
same programming environment in which Kara is
programmed. One can test programs in the simulated
world of Kara and compile the automata to RCX (the
Lego micro controller) byte code to be downloaded to the
robot.

JavaKara lets the user program in Java. This makes it
possible for Kara to solve problems beyond the capability
of finite state machines. The interpreter had to be replaced
entirely, and the program editor disappeared. Though
running a Java program instead of interpreting a finite
automaton was a major change, it only required changes
to one part of the application. JavaKara makes it possible
to learn Java step by step, from the ground up, in a
graphical environment where the actions of programs are
automatically visualized. This makes it easier for
beginners to grasp the semantics of the different
programming constructs, not only the syntax. The wider
range of tasks that Kara can solve when programmed in
Java highlights the limitations of finite state machines,
and leads to an understanding of the power of different
models of computation.

7. Related work and conclusions

The design of toy worlds for programming instruction
is a popular endeavor. [Bergin 97] is a newer,
objectoriented version of Karel, the robot, as are, for
example [Buck 01] and [Boles 99], a hamster
programmed in Java. [Brusilovsky 97] offers a review of
some more toy worlds, most of them closely related to the
idea of Karel, the robot. Some visual programming
environments, not all directly related to teaching, can be
found in [Dann 00], [Fenton 89], [Kahn 95], [Smith 94].

Most of these environments offer many more options
and possibilities than Kara does, and some of them are
not expressly designed to be used for an introduction to
programming. Kara, on the other hand, was designed to
be as simple as possible, to offer no more possibilities and
options than absolutely necessary, yet still be useable for
teaching the first steps in programming in a playful,
graphical manner, within a timeframe of 6-12 hours. We
contend that one reason why Kara is successful in
achieving this goal is its unique choice of model of
computation, finite state machines.

In summary, we hold that the software package Kara
has proven that some basic ideas of programming can be
learned by beginners in a couple of hours, in a playful,
enjoyable environment. Even a physical realisation of
Kara as a Lego Mindstorms robot is possible. And the
same programming environment can be used to dive into
the real-world programming language Java, offering a
smooth transition from toy-world programming to real-
world programming.

References
[Bergin 97] Bergin, J. Karel++: a gentle introduction to the art
of object-oriented programming. Wiley, 1997.

[Boles 99] Boles, D. Programmieren spielend gelernt. Mit dem
Java-Hamster-Modell. Teubner, 1999.

[Brusilovsky 97] Brusilovsky, P., Calabrese, E., Hvorecky, J.,
Kouchnirenko, A., and Miller, P. (1997) Mini-languages: A
Way to Learn Programming Principles. Education and
Information Technologies 2 (1), pp. 65-83.

[Buck 01] Buck, D., Stucki, D.J. (2001) JKarelRobot: a case
study in supporting levels of cognitive development in the
computer science curriculum in Proceedings of the thirty second
SIGCSE technical symposium on Computer Science Education,
p. 16-20.

[Dann 00] Dann, W., Cooper, S., Pausch, R. (2000) Making the
connection: programming with animated small world in
Proceedings of the Conference Integrating Technology into
Computer Science Education, pp. 41-44.

[Fenton 89] Fenton, J. and Beck, K. (1989) Playground: An
object-oriented simulation system with agent rules for children

Appeared in the Proceedings of the 2001 IEEE Symposia on Human-Centric Computing Languages and Environments,
pages 135–141. Stresa, Italy, September 2001.

of all ages. Proceedings of Fourth Annual Conference on Object
Oriented Programming Systems, Languages, and Applications,
OOPSLA'89. New Orleans, LA, 2-6 October, 1989, pp. 123-137.

[Ferrini 00] Ferrini-Mundy, J.(2000): Principles and Standards
for School Mathematics: A Guide for Mathematicians. Notices
Of The AMS, September 2000, p. 868-876.

[Kahn 95] Kahn, K. (1995) ToonTalk – An Animated
Programming Environment for Children, in Proceedings of the
National Educational Computing Conference.

[LEGO 98] The LEGO Group: Mindstorms – Robotics
Invention System, LEGO 1998. a) User Manual, b) Technical
Reference, 110p.

[Papert 80] Papert, S.: Mindstorms. Children, Computers, and
Powerful Ideas, Basic Books, NY, 1980.

[Pattis 81] Pattis, R. E.: Karel the Robot – A gentle introduction
to the art of programming, Wiley, New York 1981.

[Reichert, Nievergelt, Hartmann 00] Reichert, R., Nievergelt, J.,
Hartmann, W.: Ein spielerischer Einstieg in die
Programmierung mit Java, Informatik-Spektrum 23 (5), Oktober
2000. Springer Verlag.

[Reichert 01] Kara, the programmable ladybug.
http://www.educeth.ch/karatojava/

[Smith 94] Smith, D. C., Cypher, A., and Spohrer, J. (1994)
KidSim: Programming agents without a programming language.
Communications of the Association for Computing Machinery
37 (7), 54 - 67.

