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Abstract 
 

As a major evolutionary step in computer technology, 
users have come to rely on ready-made application 
software, rather than writing their own programs. If 
computer users no longer program, does it follow that the 
art of programming should only be taught to computing 
professionals? We argue the case for programming as a 
component of general education. Not because of any 
direct utilitarian benefit, but in order to gain a personal 
experience as to what it means, and what it takes, to 
specify processes that evolve over time. An analogy to 
mathematics education shows that schools teach the 
concept of „proof“, although in daily life people use 
mathematical formulas without knowledge of their proof. 

Programming practiced as an educational exercise, 
free from utilitarian constraints, is best learned in a toy 
environment, designed to illustrate selected concepts in 
the simplest possible setting. As an example, we present 
the programming system Kara based on the concept of 
finite state machines. 
 
 
1. General education  

in an ever-changing world 
 

The rapid evolution of the information and 
communication technology that permeates modern society 
affects our expectations of education at all levels. Top 
priority is assigned to content that is practically oriented, 
relevant to today's job world, immediately useful. This 
emphasis on practicality is not new. Folklore identifies 
„the 3 R's: reading, 'riting, 'rithmetic“ as the main task of 
elementary school. These skills, limited to the privileged 
few throughout most of recorded history, became a 
necessary part of general education as a consequence of 
the industrial age. 

But in addition to tangible, sellable skills, education 
has always included topics about which most adults later 
say „I've never used it since I left school“. This category 
includes the majority of the topics any one student 
endured, namely most of those outside the profession 
chosen later. Is it a waste of time to study disciplines of 
no direct use? Perhaps yes, perhaps not, it all depends on 

the topic and on whom you ask. But generally we accept 
the necessity of exposure to topics not directly related to 
any material benefit. Young children, champions at 
learning, are interested in just about anything new, 
without any thought of whether they might ever use it. 
The value of learning cannot be measured in dollars and 
cents – and if we try, we end up short-changing ourselves. 

The fashionable clamor for „relevant education“ is all 
too easily misinterpreted as training focused mainly on 
skills of immediate use. This emphasis leads to mastery of 
low-level skills, such as „how to do it“, rather than to 
understanding concepts and principles, of „why and how 
it works“. In a rapidly changing field such as information 
and communication technology, mastery of today's 
release may not be of much value when a new system is 
installed a few years later. The precious school years must 
be dedicated primarily to knowledge of long-lasting 
value, to what is known as general education. 
 
2. „The 4 R's:  

reading, 'riting, 'rithmetic, 'rogramming“ 
 

As a major technical achievement of the past two 
decades, computer users no longer need to write programs 
to solve their problems. For just about every conceivable 
application, ready-made software packages provide tools 
much more powerful than what almost any user could 
write. If computer users no longer program, does it follow 
that the art of programming should only be taught to 
computing professionals? The plausibility of this 
argument has led many high schools and colleges to 
replace the introductory programming courses widely 
taught in the 70s and 80s by skill courses on how to use 
application packages. Text processing, spreadsheet 
calculations, web surfing are certainly essential job skills 
today; they deserve a brief introduction, whereafter any 
user can reach any desired skill level on his own. But the 
lion's share of the teacher's and the students' attention 
should be devoted to fundamental concepts of timeless 
validity. What are some of these concepts? 

Modern society relegates an ever-growing number of 
every-day tasks to machines. These machines act as 
controllers that initiate actions based on their current state 
and on received inputs. The number of possible 
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behaviors, of sequences of actions triggered by different 
environmental conditions, is usually so huge as to be 
impossible to enumerate. Yet, we aim to be sure that each 
and every possible behavior, of which only a tiny fraction 
will ever be played out, is „correct“ in some precise 
sense. The way to do that is to write a specification that 
captures the practical infinity of processes that may 
evolve over time, depending on received inputs. A 
program is such a formal specification, and the concept of 
„program“ is surely among the most fundamental 
concepts required to understand computers. We argue the 
case for programming as a component of general 
education. Not because of any direct utilitarian benefit, 
but in order to gain a personal experience as to what it 
means, and what it takes, to specify processes that evolve 
over time.  

To further support our argument for programming as 
part of general education, consider an analogy with 
mathematics teaching. Many professions in science and 
engineering require the use of mathematical results; 
scientists and engineers are users of mathematics in the 
same sense that many people are users of computers. 
Thus, one might argue that scientists and engineers only 
need to learn how mathematical theorems are applied; 
that the concept of „proof“ is only relevant to professional 
mathematicians. But centuries of experience show that 
any math instruction at the college level and beyond 
involves significant time devoted to proofs, even though 
most students are unlikely to ever prove a theorem 
outside their math courses. The reason is plain: we do not 
trust a „mathematics user“ to apply formulas or 
mathematical software in a reliable and responsible 
manner if he has never understood the concept of „proof“. 
Applying mathematical results is a matter of 
understanding, not just of pattern matching. Similarly, 
applying computers should be a matter of understanding, 
not just of pushing the right keys. 

The analogy between the role of programming as an 
introduction to computer science on the one hand, and the 
concept of proof in an introduction to mathematics on the 
other, is highlighted by analogous trends and debates in 
recent times. At the same time as programming was 
deleted from many curricula in grades K9-12, the concept 
of proof came under attack by some curriculum reform 
movements. But recently the importance of proofs in 
mathematics teaching is being emphasized again. In April 
2000, the US National Council of Teachers of 
Mathematics (NCTM) published new Principles and 
Standards for School Mathematics (PSSM). [Ferrini 00] 
is a good overview of PSSM. In the chapter “Reasoning 
and Proof” of PSSM we find: 

“Instructional programs from prekindergarten through 
grade 12 should enable students to 
• recognize reasoning and proof as fundamental aspects 

of mathematics; 

• make and investigate mathematical conjectures; 
develop and evaluate mathematical arguments and 
proofs; 

• select and use various types of reasoning and methods 
of proof. 

By the end of secondary school, students should be able 
to understand and produce mathematical proofs, 
arguments consisting of logically rigorous deductions of 
conclusions from hypotheses and should appreciate the 
value of such arguments.” 

In analogy with proofs leading to insight into 
mathematical reasoning, programming develops insight 
into the way computers work.  

But how to introduce students to the fundamental 
concepts of programming? There is no need to introduce 
beginners to the complexities inherent in professional 
programming languages and environments. Programming 
practiced as an educational exercise, free from utilitarian 
constraints, is best learned in a toy environment, designed 
to illustrate selected concepts in the simplest possible 
setting. The fundamental concepts of programming may 
be intellectually demanding, but they are not complex in 
the sense of requiring mastery of lots of details.  

We present a learning environment, designed to be as 
simple as possible, that highlights a few important 
programming concepts. The programming system Kara is 
based on the concept of finite state machines and serves 
to drive toy „robots“ around the floor or the screen. 
Whereas the task of programming robot motion has been 
used by many systems since LOGO, the combination with 
finite state machines as a model of computation is new. 
Finite state machines are the key to the simplicity of the 
resulting system. They are well known from every-day 
devices such as traffic lights or vending machines, which 
makes it possible to explain to students the concept of 
state machines in a concrete, “hands-on” way.  

 
3. Kara, the programmable ladybug 
 

Kara [Reichert, Nievergelt, Hartmann 00], [Reichert 
01] is a programming environment that realizes the goal 
of introducing programming by means of finite state 
machines. The use of finite state machines also has a 
practical, user-interface related advantage: a finite state 
machine can be constructed easily in a purely graphical 
manner. In a simplified version of „turtle geometry“ 
[Papert 80], and in the tradition of Karel, the robot [Pattis 
81], Kara is a programmable ladybug living alone in a flat 
world. Fig. 1 shows the main window with the grid world 
and icons for commands to control Kara and to edit the 
world.  
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Fig 1: The world of Kara 

 
In Kara’s world, there are only a few types of objects: 

unmovable tree trunks, which completely occupy a 
square; mushrooms which Kara can push around; and 
cloverleaves, of which Kara can lay down or pick up any 
number; and of course, Kara himself. Kara is placed on 
either a free square or a square occupied by only a 
cloverleaf, facing one of four possible directions. Sensors 
inform Kara about its immediate surroundings:  

 

 Is there a tree on the square in front of Kara? 

  Is there a tree on the square to Kara’s right?  

 Is there a tree on the square to Kara’s left?  

 Is there a mushroom in front of Kara?  

 Is there a cloverleaf underneath Kara? 
 
Kara can execute a couple of primitive actions:  

 Advance one square in the current direction. 

 Turn right by 90°, on the current square.  

  Turn left by 90°, on the current square. 

 Put down a cloverleaf. 

 Pick up a cloverleaf. 
 
The world of Kara, and Kara himself, are intentionally 

as simple as described above. We kept the number of 
types of objects, and of sensors and commands, to a 
minimum with which we could still pose challenging 
tasks.  

Using these sensors and commands, finite state 
machines for Kara are specified in the visual program 
editor shown in Fig. 2. The program shown makes Kara 
follow a trail of cloverleaves such as the one in Fig. 1, 
and eat them up. 

 

 
Fig 2: Kara program editor 

 
4. Instructive finite state programs 
 

Finite state machines are suitable for controlling 
processes that react to local conditions only. Indeed, 
given an environment like that of Karel the robot or Kara, 
it turns out that a program specified as a finite state 
machine is often more concise than a program for the 
same task written in a conventional programming 
language.  

Consider a wall of trees of arbitrary shape, with 
arbitrary appendages, as shown in Fig. 3a. Kara must be 
programmed to endlessly cycle around the perimeter of 
the wall, hugging it with his right side. The following 
finite state program, presented in the notation of the Kara 
environment, solves the problem (Fig 4a, b). 

 

 
 

Fig 3: a) A wall of trees and  
b) the predicate „wall to the rear-right“ 

 
Kara starts in state Seek, not knowing anything about 

its position, as expressed by the vacuous assertion 
„precondition = true“. The function of this state is to 
bring about the postcondition „wall to the rear-right“, 
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illustrated in Fig.3b: There is a piece of wall to the right 
of Kara, or diagonally to the rear-right, or both. As long 
as the bug has not sensed any piece of wall (neither ahead 
nor to the right), it moves forward. If it senses a wall, 
either ahead or to the right, it positions itself so as to 
fulfill the postcondition „wall to the rear-right“. The 
„don’t care” notation „yes or no” serves as an 
abbreviation. 

 
Seek: precondition = true, postcond. = „wall to the rear-right“ 

 
Fig 4: a) State Seek of the  
wall following program 

 
Track: precond. = postcondition = „wall to the rear-right“ 

 
Fig 4: b) State Track of the  
wall following program 

 
The mathematically inclined reader may find it 

instructive to prove the program correct by checking that 
the state Track maintains the invariant  „wall to the rear-
right“, and that, in each transition, Kara progresses in his 
march along the wall. Here we merely point out how 
several fundamental ideas of the theory of computation, 
of algorithms and programs can be illustrated in a simple, 
playful setting whose rules are quickly understood. 

 
Fig.5 shows a cloverleaf pattern which represents the 

integers mod 2 of a Pascal triangle, with its apex at the 
top left corner of the grid.  

It is remarkable that the four-state finite state machine 
shown in Fig. 6 suffices to draw this intricate pattern. The 
states 'carry0' and 'carry1' implement modulo 2 addition. 
The state 'next row' drives the bug across the grid in raster 
scan fashion. 
 

 
Fig. 5 Clover leaves and empty squares  
represent a Pascal triangle modulo 2. 

 

 
 

Fig.6 State diagram of the Pascal triangle program. 
 
Fig.7 shows the detailed specification of the state 'carry1'. 
In this state, Kara already knows that the field to his rear-
right is occupied by a cloverleaf. And to that field, it has 
to add the value of the current field. The bug consults its 
two sensors „am I facing a tree trunk“ and „am I sitting 
on a clover leaf“. The four possible answers to these two 
binary questions trigger different sequences of actions, 
followed by transitions to different next states. Consider 
the first transition as an example. Kara is not facing a tree 
trunk, meaning it has not yet reached the end of the 
current row. And it is not sitting on a cloverleaf, meaning 
it is reading a 0.  
 

 
 

Fig.7 Specification of the state carry1. 
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Since 1 + 0 = 1, Kara deposits a cloverleaf, thus writing 
the result 1 of this mod 2 addition. Kara must write on the 
correct square and must position itself properly for the 
next bit addition. This requires the complicated dance 
expressed by 7 motion commands surrounding the 
“write” command.  
 
5. Experience 
 

Kara has been used for the past years in several 
courses to teach the fundamentals of programming to 
beginners, typically high school students who never had 
any exposure to programming, and teachers with little 
background in computing. The feedback we have 
received from all these users is highly positive. Beginners 
appreciate the fact that they succeed in solving non-trivial 
problems after being coached for just a few hours. More 
expert users are surprised to learn that the conceptually 
simple structure of programming using finite state 
machines raises fundamental questions of computer 
science. 

Our programming courses start with a one day 
introduction to Kara, followed by a "real-world" 
programming language (Java, Pascal). The feedback from 
a survey of over a hundred high school students and over 
a hundred teachers can be summarized as following: 
• Not surprisingly, Kara was most motivating for those 

students with the least prior experience in 
programming.  

• All students found Kara either “very motivating” or 
“motivating” – no student was “indifferent” or found 
Kara “demotivating” or “very demotivating”. 

• Also, all students found the handling of Kara’s user-
interface either “very easy” or “easy” – no student was 
“indifferent” or found the user-interface “hard” or 
“very hard” to use. 

The written comments of the students show that they 
thought Kara had allowed them to focus on problem 
solving, on the logic and the correctness of their 
programs, without being distracted by the environment or 
by the textual syntax of a “real-world” programming 
language. They also liked the simplicity of the user-
interface, which reminded some of “early computer 
games”.  

Kara is used widely in Germany, Austria, and 
Switzerland (originally, the material was only available in 
German; now it is also available in English). To our 
surprise, Kara is not only used at the high school level, 
but also in K6-8 grade schools, and even in introductory 
courses at universities.  

The programming environment Kara is published on 
the Web [Reichert 01], along with teaching materials: a 
wide selection of exercises and their solutions, and slides 
for introductory presentations. Our web server registers, 
on average, over 11’000 requests per month, and the 

programming environment is downloaded over 500 times 
a month.  

The major question Kara users raise is „how do we get 
to real programming?“ In order to facilitate this transition, 
the extended system JavaKara allows more advanced 
users to program the ladybug in Java. JavaKara contains 
templates of procedures that call the built-in Kara 
operations, letting the user learn how to „program by 
example“. 
 
6. From Kara the bug to robots and Java 
 

The architecture of the Kara software package is 
designed to be flexible, with the goal that different 
programming models might later be added, beyond the 
finite state machines currently implemented. Therefore, 
the „integrated development environment“ of Kara was 
split into two parts, which are interconnected by a small, 
clearly defined interface (Fig. 8): 

 

 
 

Fig. 8 Software structure of Kara 
 

• Kara and his world. This part defines the properties of 
the world and the objects that can inhabit it, it defines 
the commands which Kara understands, and his 
sensors. From the outside, Kara can only be accessed 
through a „robot“ interface which allows you to query 
him about his commands and about his sensors. These 
commands can of course be executed, and his sensors 
can be queried for their current states. However, Kara 
neither knows nor cares how he is being controlled 
and programmed; no assumptions are made about what 
and how the „outside“ might want to do with Kara. 

• Program and interpreter. The program package defines 
how Kara is programmed – or more precisely, how any 
entity implementing the „robot“ interface can be 
programmed. The interpreter is responsible for 
executing the programs, controlling the entity through 
the „robot“ interface. Neither the program model nor 
the interpreter need to know anything about the entity 
they are controlling except for the information 
obtained through the interface. 
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This separation of concerns makes it possible to construct 
a whole family of Kara applications. The world model 
and the programming model could be replaced by other 
implementations without having to reprogram the other 
part. The „standard“ implementation of the world model 
is Kara itself, and the standard implementation of the 
programming model are finite automata. We exploited the 
separation of the two parts when we created LegoKara 
and JavaKara.  

 

  

Fig. 8 Kara as a Lego Mindstorms robot 
 
LegoKara (Fig. 8) is an implementation of Kara as a 

Lego Mindstorms robot. A detailed manual explains how 
to build a LegoKara, which differs slightly from the 
virtual Kara. For simplicity’s sake, the robot lacks the 
ability to lay down or pick up cloverleaves, and it does 
not have the ability to distinguish walls from objects that 
could be pushed around (mushrooms in Kara’s world). 
LegoKara is programmed using finite automata, in the 
same programming environment in which Kara is 
programmed. One can test programs in the simulated 
world of Kara and compile the automata to RCX (the 
Lego micro controller) byte code to be downloaded to the 
robot. 

JavaKara lets the user program in Java. This makes it 
possible for Kara to solve problems beyond the capability 
of finite state machines. The interpreter had to be replaced 
entirely, and the program editor disappeared. Though 
running a Java program instead of interpreting a finite 
automaton was a major change, it only required changes 
to one part of the application. JavaKara makes it possible 
to learn Java step by step, from the ground up, in a 
graphical environment where the actions of programs are 
automatically visualized. This makes it easier for 
beginners to grasp the semantics of the different 
programming constructs, not only the syntax. The wider 
range of tasks that Kara can solve when programmed in 
Java highlights the limitations of finite state machines, 
and leads to an understanding of the power of different 
models of computation. 

 

7. Related work and conclusions 
 

The design of toy worlds for programming instruction 
is a popular endeavor. [Bergin 97] is a newer, 
objectoriented version of Karel, the robot, as are, for 
example [Buck 01] and [Boles 99], a hamster 
programmed in Java. [Brusilovsky 97] offers a review of 
some more toy worlds, most of them closely related to the 
idea of Karel, the robot. Some visual programming 
environments, not all directly related to teaching, can be 
found in [Dann 00], [Fenton 89], [Kahn 95], [Smith 94].  

Most of these environments offer many more options 
and possibilities than Kara does, and some of them are 
not expressly designed to be used for an introduction to 
programming. Kara, on the other hand, was designed to 
be as simple as possible, to offer no more possibilities and 
options than absolutely necessary, yet still be useable for 
teaching the first steps in programming in a playful, 
graphical manner, within a timeframe of 6-12 hours. We 
contend that one reason why Kara is successful in 
achieving this goal is its unique choice of model of 
computation, finite state machines.  

In summary, we hold that the software package Kara 
has proven that some basic ideas of programming can be 
learned by beginners in a couple of hours, in a playful, 
enjoyable environment. Even a physical realisation of 
Kara as a Lego Mindstorms robot is possible. And the 
same programming environment can be used to dive into 
the real-world programming language Java, offering a 
smooth transition from toy-world programming to real-
world programming. 
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